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Abstract

A new generation of efficient parallel, multi-scale, and interdisciplinary ocean
models is required for better understanding and accurate predictions. The purpose of
this thesis is to quantitatively identify promising numerical methods that are suitable
to such predictions. In order to fulfill this purpose, current efforts towards creating
new ocean models are reviewed, an understanding of the most promising methods used
by other researchers is developed, the most promising existing methods are studied
and applied to idealized cases, new methods are incubated and evaluated by solving
test problems, and important numerical issues related to efficiency are examined.

The results of other research groups towards developing the second generation of
ocean models are first reviewed. Next, the Discontinuous Galerkin (DG) method for
solving advection-diffusion problems is described, including a discussion on schemes
for solving higher order derivatives. The discrete formulation for advection-diffusion
problems is detailed and implementation issues are discussed. The Hybrid Discon-
tinuous Galerkin (HDG) Finite Element Method (FEM) is identified as a promising
new numerical scheme for ocean simulations. For the first time, a DG FEM scheme is
used to solve ocean biogeochemical advection-diffusion-reaction equations on a two-
dimensional idealized domain, and p-adaptivity across constituents is examined. Each
aspect of the numerical solution is examined separately, and p-adaptive strategies are
explored. Finally, numerous solver-preconditioner combinations are benchmarked to
identify an efficient solution method for inverting matrices, which is necessary for
implicit time integration schemes. From our quantitative incubation of numerical
schemes, a number of recommendations on the tools necessary to solve dynamical
equations for multiscale ocean predictions are provided.

Thesis Supervisor: Pierre F. J. Lermusiaux
Title: Associate Professor of Mechanical Engineering

3



4



Acknowledgments

Many thanks to my thesis advisor, Pierre, for his guidance throughout the pro-

cess of this thesis work. Particularly, I thank him for his careful reading of this

document, and his suggestions for improvements. Also, thanks to research scientists

Pat and Wayne, Pat for his patience and help with debugging, and Wayne for all

his constructive criticisms. Thanks to Oleg and Jinshan for all their comments and

suggestions.

Thanks to Themis for his many fun and enlightening discussions, Arpit for his

attention to detail when checking my work, and Lisa for her friendliness, profession-

alism, and her support with the biogeochemical test cases. Thanks to Eric for his help

with Latex, technical details, and his friendship. Thank you Melissa and Aprit for

help proofreading my thesis. I also thank Mike for many fun discussions on numerics,

and Sarah for listening to my every complaint. Also Harry, whenever I need a friend

you are always there, thank you for that.

To mom and dad, thanks so much for always supporting me in whatever I do.

Thanks for pushing when I need a push, and pulling when I am pushing too hard.

Thanks to my sister Anabel who has always been an inspiration.

I am grateful to the Massachusetts Institute of Technology for awarding me the

Pappalardo Fellowship, the Office of Naval Research for research support under grants

N00014-07-1-1061 (ONR6.1) N00014-08-1-1097(PHILEX) to the Massachusetts Insti-

tute of Technology, and also the Natural Sciences and Engineering Research Council

of Canada for awarding me a scholarship to aid with my financial support.

I am very grateful for this opportunity given to me, and I feel truly blessed for

being surrounded by so many wonderful people.

5



Glossary

εh The set of discretized edges
ε∂

h The set of discretized edges on the boundary of the domain Ω
εo

h The set of discretized edges on the interior of the domain Ω
θ A generic (modal or nodal) basis function
Ω The domain of interest
∂Ω The boundary of the domain of interest
φ A nodal basis function
ψ A modal basis function

C Convection (or stiffness) matrix Ck
ji =

∫
K
θi(x) · ∇θj(x)dK

F The functional form of the flux
K A single element in the triangulation
∂K The boundary of a single element in the triangulation
M The mass-matrix, where Mji =

∫
Ω
θiθjdΩ

n̂ The unit normal vector pointing out of the domain
Pp Set of polynomials of order p
q The scaled gradient of u, that is, q− κ∇u = 0
R The residual
S,S The scalar and vector functional forms of the source term
Th The discretized triangulation
u,u The unknown scalar or vector respectively
v Vector weighting (or test) function
V Generalized Vandermonde matrix
w Scalar weighting (or test) function
x Spatial coordinates

ADR Advection-Diffusion-Reaction
BiCGSTAB Bi-Conjugate Gradient STABilized
CG Continuous Galerkin
CDG Compact Discontinuous Galerkin
CFD Computational Fluid Dynamics
CFL Courant-Friedrichs-Lewy: Numerical stability condition
CGS Conjugate Gradient Squared
DG Discontinuous Galerkin
DOF Degree(s) of Freedom
FD Finite Difference
FEM Finite Element Method
FV Finite Volume
GCM General Circulation Model
GMRES Generalized Minimum RESidual
GS Gauss-Seidel
h-adaptive Mesh adaptation strategy based on refining/coarsening elements
HDG Hybrid Discontinuous Galerkin
HS Hydrostatic
IBM Immersed Boundary Method
ILU Incomplete Lower Upper factorization
IP Internal Penalty method
LDG Local Discontinuous Galerkin
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LU Lower Upper factorization
MG Multi-Grid
MPI Message Passing Interface: A parallel programming language
MWR Method of Weighted Residuals
NHS Non-Hydrostatic
NPDZ Nutrient-Phytoplankton-Detritus-Zooplankton: A four-compo-

nent biological model
NPZ Nutrient-Phytoplankton-Zooplankton: A three-component bio-

logical model
p-adaptive Mesh adaptation strategy based in increasing/decreasing the poly-

nomial order of basis functions
PE Primitive Equations
QMR Quasi-Minimum Residual
RK Runge-Kutta: A time discretization scheme
RKDG Runge-Kutta Discontinuous Galerkin
S-coordinates Sigma coordinates: A terrain-following vertical discretization

scheme
SSP Strong Stability Preserving: Type of RK scheme
SWE Shallow Water Equations
WHOI Woods Hole Oceanographic Institute
Z-coordinates A stair-case vertical discretization scheme
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Chapter 1

Introduction

The impact of human activities on the ocean and lakes is becoming increasingly

global. To successfully coexist with the ocean and utilize marine resources, civiliza-

tion needs to monitor and predict our natural environment. A new generation of

efficient parallel, multi-scale, and interdisciplinary ocean models is required for better

understanding and accurate predictions. There is a rich spectrum of needs for ocean

modeling, including climate dynamics, the sustenance of life on Earth, coastal ocean

and fisheries management, biological production and ecosystem dynamics, efficient

maritime route planning, hazardous spills dispersion, and underwater sound propa-

gation for efficient naval operations. Ocean prediction is a challenging problem due

to its multi-disciplinary and multi-scale nature, and due to the constraint of real-time

predictions. Depending on the phenomena being examined, space scales can vary

from millimeters to planetary, and time scales can vary between seconds to millen-

niums. Also, for accurate simulation results, efficient nonlinear assimilation of data

into ocean models and estimation of the most useful data using adaptive sampling is

required.

The MIT “Multidisciplinary Simulation, Estimation and Assimilation System”

(MSEAS) (Web-MSEAS, 2009), includes the primitive equation code of the Harvard

Ocean Prediction System (HOPS) and other computational systems: a nested data-

assimilative barotropic tidal prediction system (Logutov and Lemusiaux, 2008), a

coastal objective analysis scheme, the Error Subspace Statistical Estimation (ESSE)
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system for data assimilation (Lemusiaux, 1999), optimization (Heaney et al., 2007)

and adaptive sampling (Lemusiaux, 2007), novel Objective Analysis schemes (Agar-

wal, 2009), multiple biological models (Besiktepe et al., 2003) and several acoustic

models (Robinson and Lermusiaux, 2003). This system is being used for realistic sim-

ulations and real-time forecasts in many regions of the world’s ocean. At the heart of

this system is a free-surface hydrostatic primitive equation model with new two-way

nesting capabilities. These capabilities have been used in real-time experiments since

2001 to improve the resolution accuracy in selected regions with minimal modification

and run-time expense.

One of the goals of the MSEAS group is to utilize and develop new numerical

methods for ocean predictions. In the past decade, new numerical algorithms have

been developed, not only for computational fluid dynamics, but also for chemical

and biological dynamics. It is now possible to research the next generation of ocean

prediction models that build upon progress made in these other research fields, lead-

ing to a better understanding of interdisciplinary ocean dynamics. Ocean specific

numerical research includes: fully coupled physical, biological and acoustic modeling;

multi-scale models; unstructured spatial grids; distributed ocean modeling; embedded

models; high-order schemes; as well as self-modifying models that adapt to data and

learn proper parameterizations and parameters.

The purpose of this thesis is to identify promising numerical methods that are

suitable to ocean predictions. In order to fulfill this purpose, current efforts towards

creating new ocean models are reviewed, an understanding of the most promising

methods used by other researchers is developed, new methods are investigated and

demonstrated by solving a test problem, and important numerical issues related to

efficiency are examined. The Discontinuous Galerkin (DG) Finite Element Method

(FEM) is identified as a promising new numerical scheme for ocean simulations. The

DG FEM is used to solve biogeochemical advection-diffusion-reaction equations on a

two-dimensional idealized domain, and p-adaptivity across constituents is examined.

Finally, the efficient inversion of the linear discrete operator using iterative solvers is

explored. This thesis develops the tools necessary to solve the dynamical equations
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for ocean predictions.

1.1 Thesis Organization

Chapter 2 reviews the work done by numerous groups towards developing the

second generation of ocean models. The model developed by each group is briefly

summarized, and all the models are compared and grouped. Chapter 3 describes the

Discontinuous Galerkin (DG) method for solving advection-diffusion problems, detail-

ing the discrete formulation and discussing implementation issues. The new Hybrid

Discontinuous Galerkin method for solving higher order derivatives is also briefly dis-

cussed. Chapter 4 demonstrates the solution of biogeochemical reaction equations

on two-dimensional unstructured grids using DG. Each aspect of the numerical so-

lution is examined separately, and p-adaptive strategies are examined. Chapter 5

benchmarks numerous solver-preconditioner combinations to identify an efficient so-

lution method for inverting matrices, which is necessary for implicit time integration

schemes. Finally, Chapter 6 summarizes the conclusions and makes recommendations

on how to proceed.
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Chapter 2

Review of Ocean Models

2.1 Introduction

The first generation of ocean modelling systems are based on the seminal article

by Bryan (1969). In this article a hydrostatic, rigid lid model is proposed with

an energy conserving numerical scheme. While modern ocean models have become

sophisticated modelling systems with complex data assimilation schemes, adaptive

modelling capabilities, free surface [and] open boundary conditions, the numerical

schemes used for these models are still largely based on the original computational

fluid dynamics technology of the late sixties, that is low-order finite difference and

finite volume schemes on structured grids. For a review of the first generation of

ocean models, the reader is referred to Griffies et al. (2000).

Recent advances in numerical schemes include finite volume and finite elements

methods on unstructured grids. While some ocean models have used the finite vol-

ume methods (Marshall et al., 1997a,b, 1998), all of the first generation modelling

systems are based on low order schemes on structured grids. The vertical discretiza-

tion has garnered significant attention, resulting in a number of terrain following

coordinate schemes (Freeman et al., 1972), isopycnal vertical coordinates (Bleck and

Smith, 1990), z-coordinates (Bryan, 1969), and hybrid schemes (Spall and Robinson,

1990, Pietrzak et al., 2002). Also, curvilinear structured grids have been used in the

horizontal (Adcroft et al., 2004). Nonetheless, it has been recognized by a number
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of different modelling groups that new Computational Fluid Dynamics (CFD) tech-

nologies are suitable to be used for the second generation of ocean models. The most

prominent second generation models are summarized in Table 2.1, where “second gen-

eration” is [for now] interpreted as those models that use unstructured grids. Refer

to Table A.1 for an additional summary with more details.

In the following sections, each of these models are described individually to high-

light the different modelling ideologies, features, and numerical methods. For a gen-

eral review of modelling efforts, the reader is referred to Pain et al. (2005) and Slingo

et al. (2009).

2.2 ADCIRC

ADCIRC is a FEM model developed for coastal oceans, shelves, estuaries, inlets,

floodplains, rivers and beaches. The development team consists of R. Luettich (UNC-

CH), J. Westerink (ND) R. Kolar (OU), C. Dawson (UT), S. Bunya (U-Tokyo), and

E. Kubatko (OSU).

The model is actively being developed with current efforts towards upgrading

the computational engine from a CG FEM based solution to a new h-p adaptive DG

FEM based algorithm. The model can solve the following equations: two-dimensional

Shallow Water Equations (SWE); three-dimensional mass and momentum conserva-

tion subject to incompressibility, hydrostatic and Boussinesq approximations; two-

dimensional sediment continuity equation; two-dimensional and three-dimensional

temperature and salinity transport equations.

Some features of the model include:

• full wetting/drying elements in two and three dimensions;

• barrier elements (such as levees);

• Conduits and porous barriers; at least second order accurate numerical schemes;

• implicit or explicit time-stepping schemes;

• highly scalable parallel Message Passing Interface (MPI) implementation (up to
1000’s of processors). This system is written in FORTRAN 90.
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Model Name Details
ADCIRC
ADvanced CIRCulation model

FEM (CG or DG). Designed for coastal oceans,
shelves, estuaries, inlets, floodplains, rivers and
beaches

Delfin FV/FD
ELCIRC
Eularian-Lagrangian CIRCu-
lation model

FV/FD Eulerian-Lagrangian using prisms/quads. De-
veloped for Columbia River, also used for simulation of
3D baroclinic circulation across river-to-ocean scales,
and for estuaries and continental shelves.

FEOM
Finite Element Ocean Model

FEM using prisms. General-purpose general circula-
tion model solving primitive equations under Boussi-
nesq approximation

Finel FEM using tetrahedrals. Solves 3D non-hydrostatic
equations.

FVCOM
Finite Volume Coastal Ocean
Model

FV using prisms. Developed for estuarine flood-
ing/drying process in estuaries and the tidal-
,buoyancy- and wind-driven circulation in coastal re-
gions featured with complex irregular geometry and
steep bottom topography.

ICOM
Imperial College Ocean Model

FEM (CG and DG) using tetrahedrals. Developed as
general model useful for all ocean regimes.

RiCOM
River and Coastal Ocean
Model

FEM. Used to provide storm surge forecasts. Empha-
sis on coastal oceans.

SELFE
Semi-Eularian-Lagrangian
Finite Element ocean model

FEM using prisms. Developed for Columbia River,
also used for simulation of 3D baroclinic circulation
across river-to-ocean scales.

SEOM
Spectral Element Ocean Model

Spectral Methods (SM). Solved 2D SWE, and solving
primitive 3D Boussinesq equations in development.

SLIM
Second-generation Louvain-
la-Neuve Ice-ocean Model

FEM (DG or CG). Focus on global climate evolution.

SUNTANS
Standford Unstructured Non-
hydrostatic Terrain-following
Adaptive Navier-Stokes Simu-
lator

FV using prisms. Developed for coastal ocean simula-
tions.

UnTRIM Unstructured Tidal
Residual Inter-tidal Mudflat
model

FV/FD using prisms/quadrilaterals. Developed for
rivers, lakes, and coastal oceans.

Table 2.1: Summary of second generation ocean models
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For recent articles related to the development of ADCIRC, refer to Dawson and

Proft (2002), Bunya et al. (2005), Kubatko et al. (2006), and Forbes et al. (2007).

Also the development site is located at Web-ADCIRC (2006).

This modelling system has been used for a number of applications including mod-

elling tides (Westerink et al., 1994, Blanton et al., 2004, Jarosz et al., 2005), hurricane

storm surges (Blain et al., Gica et al., 2001), flooding (Luettich and Westerink, 1995,

Feyen et al., 2006), and wind driven circulation and transport (Luettich et al., 1999).

It has also been used extensively for storm surge simulations in New Orleans (West-

erink et al., 2007). Finally, it is used by the U.S. Army Corps of Engineers and the

U.S. Navy, is certified by FEMA for the National Flood Insurance Program, and is

used by NOAA’s National Ocean Services for storm surge/inundation applications.

2.3 Delfin and Finel

Delfin was developed by D. Ham under the supervision of J. Pietrzak and Guus

Stelling at Delft University of Technology (Ham, 2006). This model is a three-

dimensional finite-volume/finite-difference model using an unstructured mesh. The

group for which this model was developed is currently studying the Indian Ocean

Tsunami. D. Ham is currently working with the ICOM group. This code is written

in C.

Finel was also developed by the same group, and it is a three-dimensional non-

hydrostatic finite element model bases on a tetrahedral mesh (that is, unstructured

in all three dimensions). This code is being developed by R. J. Labeur at TU Delft.

The website group website is located at Web-DELFT (2009).

2.4 ELCIRC and SELFE

ELCIRC and SELFE were originally developed for applications surrounding the

Columbia river estuary. The CORIE modeling system, a coastal margin observatory

for the Columbia River estuary and plume, uses SELFE and ELCIRC by default, but
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have previously used other models such as POM, ADCIRC, and QUODDY. SELFE

is the newest model and has a number of improvements over ELCIRC, overcoming

restrictions in the discretization. SELFE uses the FEM, while ELCIRC uses FV in

the horizontal and FD in the vertical. The group is based out of the OGI School of

Science and Engineering, and the development team consists of A. Baptista (Scientific

director), J. Zhang, M. G. G. Foreman, D. Stucchi, E.P. Myers, A. Oliveira, and A.B.

Fortunato. The model is actively being developed, with current efforts towards solving

non-hydrostatic equations.

The current model solves the 3D shallow-water equations, with hydrostatic and

Boussinesq approximations, and transport equations for salinity and heat. The pri-

mary variables that SELFE solves for are: the free-surface elevation; 3D velocity; 3D

salinity; and 3D temperature of the water. The numerical formulation is not explicitly

mass-conserving, but the mass-conservation properties are “very good.” Neither EL-

CIRC nor SELFE use a mode-splitting scheme, nor do they use a projection method,

that is, the velocity and surface elevation are solved simultaneously (Zhang et al.,

2004, Baptista and Zhang, 2008). SELFE and ELCIRC use quadrilateral or pris-

matic elements, allowing great flexibility in the choice for vertical discretization.

Some features of the model include:

• wetting and drying;

• Z, S, or mixed S-Z coordinates for vertical discretization;

• ECO-SELFE (biological model);

• Semi-implicit time integration;

• Both parallel (MPI) and serial version of code.

This system is written using a combination of FORTRAN and MATLAB.

A recent description of SELFE can be found in Baptista and Zhang (2008), and a

description of ELCIRC can be found in Zhang et al. (2004). Also, the group website

is located at Web-CORRIE (2009).

ELCIRC has been applied to the Columbia River (Baptista et al., 2005), to the

St. John’s river (Myers and Aikman, 2003), to study marine ecosystem connectivity
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(Robinson et al., 2005), and to stratification (Pinto et al., 2003) and tidal (Foreman

et al., 2006) studies in estuaries. SELFE has been tested extensively against standard

ocean/coastal benchmarks and used in a number of bays/estuaries around the world

(Baptista and Zhang, 2008). SELFE will be used for the same applications as ELCIRC

in the future.

2.5 FEOM

FEOM is being developed under the Community Ocean Model (COM) project

undertaken by the Alfred Wegener Institute (AWI) located in Bremerhaven, Germany.

The goal of the COM project is to develop a general-purpose ocean model based on

unstructured meshes that contains standard ocean modelling tools, such as different

advection schemes, mixed layer parameterizations, free surface boundary conditions,

and generalized vertical coordinates. FEOM uses the FEM. This is an open source

project, with a number of approved developers, but the main contacts are S. Danilov,

L. Nerger, and J. Schröter.

This model is actively being developed with an emphasis on making this un-

structured grid model as efficient as a structured grid model. FEOM solves the 3D

primitive equations under the Boussinesq approximation. It uses prismatic elements,

allowing for a generalized vertical discretization. An earlier, less-efficient version of

the code used prismatic elements.

Some of the model features include:

• Free surface;

• Non-hydrostatic;

• Sea-ice model;

• NPDZ biological model;

• Semi-implicit time stepping;

• Parallel MPI implementation.
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The formulation of FEOM is described in Danilov et al. (2004), and effects of vertical

discretization are discussed in Wang et al. (2008). The AWI website is located at

Web-AWI (2009) and the FEOM project page is located at Web-FEOM (2009).

The model has been used for studying circulation and bottom pressure in the

Atlantic (Böning et al., 2006), assimilation of sea-surface height data from the TAN-

DAM project (Nerger et al., 2006), and studying the influence of tidal forcing and

topography representation in the Weddel Sea (Wang et al., 2009).

2.6 FVCOM

FVCOM was originally developed for the estuarine wetting/drying process in es-

tuaries and the tidal-, buoyancy- and wind-driven circulation in coastal regions with

complex irregular geometry and steep bottom topography. FVCOM uses the FV

method. The FVCOM group is based at the University of Massachusetts-Dartmouth,

and the main development team consists of C. Chen (UMass), G. Cowles (UMass),

and R. C. Beardsley (WHOI).

This model is mature, but is still actively being developed, with current focus on

the non-hydrostatic solver. The hydrostatic model solves the 3D primitive equations

with a mode-splitting scheme. This model uses prismatic elements, with the ver-

tical discretization employing terrain-following coordinates. FVCOM is a complete

modelling system, with some of the model features including:

• Free surface;

• Non-hydrostatic;

• wetting/drying elements;

• Biological models;

• Fully non-linear ice models;

• Wave model;

• Semi-implicit time stepping;

• Parallel MPI implementation.
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The system is written in FORTRAN 90.

The formulations for FVCOM is described in Chen et al. (2003), with a comparison

between structured and unstructured grids in Chen et al. (2007). The group website

is located at Web-FVCOM (2009).

FVCOM has seen a number of applications in Bays, (Zhao et al., 2006, Chen

et al., 2008), estuaries (Xue et al., 2009), lakes (Chen et al., 2003), seas (Chen et al.,

2003) and other regimes. A complete listing of current projects can be found at

Web-FVCOM (2009).

2.7 ICOM

ICOM is being developed for use as a general ocean circulation model. The model

uses sophisticated anisotropic mesh adaptivity in three dimensions. The ICOM group

is based out of the Imperial College in London, but collaborates with Oxford, the

National Oceanography Center in Southampton, and the Proudman Oceanographic

Laboratory in Liverpool. ICOM uses either the CG FEM or the DG FEM, with

research toward determining the best type of finite element to use for ocean appli-

cations. Some of the developers responsible for developing the model are C. C. Pain

(Project head), D. A. Ham, M. D. Piggot, C. J. Cotter, A. J. H Goddard, C. R. E.

De Oliveira, and A. P. Umpleby.

A large team is actively developing this model. ICOM uses tetrahedral elements

with anisotropic adaptivity in all three dimensions. The model solves the three-

dimensional non-hydrostatic Boussinesq equations. A projection method is used to

enforce the continuity constraint. Some of the model features include:

• Sophisticated dynamic anisotropic mesh adaptivity;

• Free-surface;

• Non-hydrostatic;

• NPDZ biology model;

• wetting and drying;

• Implicit time stepping;
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• Sophisticated load-balanced domain decomposition parallel implementation.

The model is described in Ford et al. (2004a) and Piggott et al. (2008), and

validated in Ford et al. (2004b). Mesh adaptivity is discussed in Piggott et al. (2005)

with the optimization metric discussed in Power et al. (2006). The development

website is located at Web-ICOM (2008).

This model is still in the development phase and has not seen much realistic ap-

plication. It promises to be useful for modelling Western boundary currents, flow

over topography, open ocean deep convection, gravity currents, internal wave break-

ing, salt fingering, tidal modelling, tsunami modelling, North Atlantic thermohaline

circulation, and wetting and drying.

2.8 RiCOM

RiCOM was developed by R. A. Walters, and is used to provide storm surge

forecasts for New Zealand. It solves the three-dimensional primitive equation hydro-

dynamic model with semi-implicit time stepping and a semi-Lagrangian advection

scheme. It uses the CG FEM on triangular and quadrilateral elements. It also has a

non-hydrostatic pressure option. This model is embedded into a New Zealand fore-

casting system that includes a Local Area Weather model, a sea surface height model,

and a wave model.

The model formulation is described in Walters (2005b) and validation for storm

surge forecasting is discussed in Lane and Walters (2009). The RiCOM model has

results related to ocean modelling, from the type of FEM to use (Walters, 2005a,

Walters and Barragy, 1997), to solution methods (Barragy and Walters, 1998, Walters

et al., 2007) to model design considerations (Walters, 2006).

35



2.9 SEOM

SEOM is being developed for large scale ocean applications. The eventual goal

is to solve the three-dimensional non-hydrostatic primitive equations, but SEOM

currently has a robust solver for the two-dimensional, depth integrated shallow water

equations. SEOM3D solves the primitive hydrostatic and Boussinesq Navier Stokes

equations in three dimensions. This model uses high-order Spectral Element Method

(SEM) on unstructured rectangular meshes in the horizontal and sigma coordinates in

the vertical. SEOM is developed by M. Iskandarani (Project head), D. B. Haidvogel,

J. C. Levin, and J. P. Boyd.

Some of the model features include:

• h-p refinement;

• Free-surface;

• Non-hydrostatic;

• Semi-implicit time stepping;

• MPI parallel implementation.

SEOM was originally written in C, but was later re-coded in FORTRAN 90.

The formulation of the two-dimensional SEOM is described in Iskandarani et al.

(1995), and the three-dimensional formulation is described in Iskandarani et al. (2003).

The SEOM development website is located at: Web-SEOM (2009).

The two-dimensional version of SEOM has seen a number of applications, includ-

ing an investigation of the wind-driven circulation in the Mediterranean sea (Molcard

et al., 2002) and an investigation of the dynamics of the long period tides in the global

ocean (Wunsch et al., 1997).

2.10 SLIM

SLIM is developed as an ice-ocean model for simulating global climate, and large-

scale ocean applications. SLIM is based out of the UCL, with partners from all
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around the world. SLIM uses both the CG FEM and the DG FEM with research

aimed towards determining the best type of finite element for ocean applications.

SLIM is being developed by a large team, some members including E. Deleersnijder,

T. Fichefet, V. Legat, J.-F. Remacle, E. Hanert, C. König Beatty, L. White (UCL), J.-

M. Beckers (ULG), V. Dehant (Royal Observatory of Belgium), O. de Viron (IPGP),

E. Delhez (ULG), E. Hanert from the (UoR, UK), D. Le Roux (ULaval), and E.

Wolanski (AIMS).

The model is actively being developed with current efforts focused on the three-

dimensional implementation. SLIM uses horizontally adaptive unstructured prismatic

meshes. The governing equations currently solved for include the depth-integrated

shallow-water equations and the three-dimensional hydrostatic primitive equations.

The SLIM group has generated a number of high-quality unstructured meshes for

various ocean regimes. Some of the current model features include:

• Adaptive horizontal mesh;

• Sea-ice model;

• State of art sub-grid-scale parameterizations;

• Semi-implicit time stepping;

• Parallel.

The SLIM project has computational results in tracer advection (White, 2008), mesh

adaptation (Remacle et al., 2005, 2006), mesh generation (Legrand et al., 2007),

and dispersion analysis (Bernard et al., 2008, Le Roux, 2005). The two-dimensional

formulation is outlined in Le Roux et al. (2000) and the three-dimensional formulation

is outlined in White et al. (2008). The group development website is located at Web-

SLIM (2009).

Since the model is still under development, it has not seen a large number of real-

istic applications. Once completed, it should be useful as a general ocean circulation

model with application to multi-scale ocean processes.
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2.11 SUNTANS

SUNTANS is an unstructured grid, non-hydrostatic, finite volume coastal ocean

simulator. The development team is based out of Stanford, but includes a number of

researchers from around the world. The core development team at Stanford consists

of A. Boehm, D. Fong, O. Fringer, M. Gerritsen, E. Gross, J. Koseff, S. Monismith,

R. Naylor, R. Street, and S. Sankaranarayanan. The model is mature, and one of

the current development projects is nesting this unstructured grid model within the

existing structured grid Rutgers Regional Ocean Model System (ROMS) (Fringer

et al., 2006a). SUNTANS uses prismatic meshes and a stair-case representation of

the bottom topography. The stair-case representation is combined with the Immerse

Boundary Method (IBM) to properly resolve bottom topography. The model solves

the Navier Stokes equations under the Boussinesq assumption, and uses an LES

turbulence closure model. Some of the model features include:

• Non-hydrostatic;

• Large eddy simulation for resolved features;

• Z-level coordinates combined with the immersed boundary method for accurate
topography on bottom;

• wetting and drying;

• Semi-implicit time stepping using the Theta method;

• Parallel (MPI) implementation.

The formulation for SUNTANS is described in Fringer et al. (2006b), and the model

is based on the method by Casulli (1999). The group development site is located at

Web-SUNTANS (2009).

The majority of SUNTANS applications have been related to internal tides (Jachec

et al., 2006, 2007, Venayagamoorthy and Fringer, 2005), but the code could also be

used for applications in estuaries and coastal oceans.
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2.12 UnTRIM

UnTRIM is an unstructured orthogonal grid finite volume or finite difference

model using prismatic or quadrilateral elements. It was developed for estuaries,

lakes, and coastal oceans. It was developed by V. Casulli from Trento University,

Italy. The model solves the three-dimensional shallow water equations, as well as

three-dimensional transport equations for salt, heat, dissolved matter, and suspended

sediments. Some of the model features include:

• Non-hydrostatic;

• Free surface;

• Semi-implicit time stepping;

• Parallel (MPI) implementation.

Publications related to the development of UnTRIM are: Casulli (1999), Casulli

and Walters (2000), Casulli and Zanolli (2002, 2005), and the code can be obtained

from: Web-UNTRIM (2009).

UnTRIM has a large user base, and has been applied to storm surge predictions

in bays (Shen et al., 2006a,b), and rivers (Liu et al., 2008).

2.13 Discussion and Conclusions

In order to compare and contrast the different models, Figure 2-1 was created.

There are two main groups of models, the FEM and FV models. In general, the FV

models are more mature, likely because the technology is older. In the FV group,

FVCOM and SUNTANS have greater flexibility in their meshes, since UnTRIM re-

quires orthogonal unstructured meshes. Also, FVCOM is a mature modelling system,

not just a solver for dynamics. UnTRIM also has a large user base. But SUNTANS

and FVCOM are expected to see increased usage in the future.

In general, the FEM models are less mature, highlighted by the fact that most

do not have non-hydrostatic solver options. The ADCIRC, SELFE/ELCIRC, and
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FEOM models have been used for realistic, albeit somewhat specialized, applica-

tions. RiCOM and DELFIN/FINLAB have fewer developers, and the models are less

sophisticated than the top row. SEOM is still under development, although it has

seen more realistic usage than either ICOM or SLIM. ICOM and SLIM are the most

sophisticated models reviewed, with their major advantage being adaptive meshing,

although this does lead to an increase in development time due to the additional

complexity.

Most of the second generation models reviewed use the FEM with some form of

non-conforming or discontinuous element. The FEM offers a number of advantages

over the FV method. Specifically, the FEM variational framework allows closed from

proofs about the numerical schemes in terms of consistency and stability. Also, higher

order schemes are more easily formulated, providing a flexible code capable of arbi-

trarily high order schemes. The FEM can also be generalized for arbitrarily shaped

elements, allowing a single implementation capable of having mixed elements within

the same mesh. The FEM is more general than the FV method allowing greater

flexibility when developing new schemes. In fact, FV methods can be cast in terms of

the FEM. Among the disadvantages of traditional FEMs are increased complexity in

the implementation, and CG FEMs have difficulty stabilizing advection-dominated

flows, leading to complicated stabilization schemes. Newer DG schemes do not have

difficulty stabilizing advection-dominated flows, but they suffer from poorer compu-

tational efficiency and complications with second order or higher derivatives. Despite

the disadvantages, most of the second generation model developers chose to use the

FEM with a non-conforming or discontinuous discretization.

Because the DG schemes are newer with less established practices, and because

they offer exciting new possibilities for solving advection-dominated flows, it was

decided to investigate these schemes further. The next section provides and overview

of DG methods.
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Figure 2-1: Second generation unstructured grid ocean modelling systems
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Chapter 3

Discontinuous Galerkin (DG)

Methods

It is assumed that the reader is familiar with FD and FV methods, but that a

brief review of the FEM is in order.

First a consistent notation is introduced that will be used throughout this docu-

ment. Referring to Figure 3-1, the problem domain is specified as Ω, and its boundary

as ∂Ω. If a boundary has a specified type “D”, that boundary will be indicated as

∂ΩD. The discretized triangulation is represented by Th. Individual elements within

Th are represented with Ki, where the subscript is used to refer to a specific triangle

in the triangulation or omitted when referring a general triangle. The boundary of

an element Ki is indicated by ∂Ki. Thus we can say Th =
⋃
Ki. We also define

the set containing all the edges in the domain εh =
⋃
∂Ki, the set containing all

domain-boundary edges ε∂h = εh ∩ ∂Ω, and the set containing all domain-interior

edges ε◦h = εh\ε∂h.

Consider:

∂u

∂t
+∇ · F(u)− S(u) = 0 (3.1)

The numerical solution, uh, to this equation will have a residual R = ∂uh
∂t

+ ∇ ·

F(uh) − S(uh). In FEM, we try to set R = 0 over specified weighting (or test)
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Figure 3-1: Notation definition for domain

functions on the element, and this is known as the Method of Weighted Residuals

(MWR) (Chapra and Canale, 2006). That is, we set

∫
Ω

RwdΩ = 0 (3.2)

where w is the test function. If w and the numerical solution uh were in an infinite

dimensional space, then uh would satisfy the equations exactly. However, by the very

nature of discrete, numerical solutions, the space of w and uh cannot be infinite.

Their numerical solutions but reside in a finite space. The choice of space will make

a significant difference in the type of FEM and the solution method.

There are a number of standard choices for choosing the test function, including:

1. Collocation

2. Subdomain

3. Galerkin

With the Collocation method, w = δ(xi), that is, the test functions are chosen as

delta functions at discretely chosen points xi. With the Subdomain method, w = C|K ,

that is w is chosen as a constant, C, over the triangle K. With the Galerkin method,

w is chosen to be the same as the basis function, θ, used to represent uh, that is

w = θ.

To discretize the solution in FEM, a finite dimensional basis function that attempts

to represent the shape of the true solution is used. This basis is finite and incomplete,
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Figure 3-2: Example of one-dimensional quadratic nodal and modal bases

that is, it may not reproduce the true solution. Thus, we say that the continuous

true function is expressed, for example, as

u(x, t) ≈ uh(x, t) =
∑
i

uh,i(t)θi(x) (3.3)

uh(x, t) =

NP∑
i=1

uh,i(t)ψi(x) (3.4)

uh(x, t) =

NP∑
i=1

uh,i(t,xi)φi(x) (3.5)

where 3.3 is a generic representation of a basis θi(x), 3.4 is an example of a modal

basis function ψi(x) where the unknown coefficients uh,i(t) are a function of time and

related to a specific mode, and 3.5 is an example of a nodal basis function φi(x)

where the unknown coefficients uh,i(t,xi) are a function of time and related to a

specific point in space xi, and Np is the number of points or modes. Note that the

notation “(.)h” is used to indicate the discretized solution which is dependent on the

mesh size characterized by the value “h”. A nodal basis is equal to one at a particular

node, and zero on all other nodes. A modal basis is usually non-zero on the entire

element, but is related to a specific mode or polynomial power. An example of a

one-dimensional quadratic nodal and model element is shown in Figure 3-2.

As an example, with this machinery in place, the discretization of
∫

Ω
∂u
∂t
wdΩ pro-
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ceeds using 3.3 as follows:

∫
Ω

∂u

∂t
wdΩ ≈

∫
Ω

∂
∑

i uh,iθi
∂t

whdΩ

=
∑
i

∂uh,i
∂t

∫
Ω

θiwhdΩ

Choosing wh in the Galerkin sense, that is wh = θj.j = 1...NP , we have

∫
Ω

∂u

∂t
wdΩ ≈

∑
i

∂uh,i
∂t

∫
Ω

θiθjdΩ

=
∑
i

∂uh,i
∂t

∫
Ω

θiθjdΩ

which can be written as a matrix-vector multiplication

∫
Ω

∂u

∂t
wdΩ ≈ M

∂uh
∂t

where Mji =
∫

Ω
θiθjdΩ is known as the mass matrix. Note, in this example, θ could

be either a modal or nodal basis, and can be defined in any appropriate space. The

FEM is a powerful numerical method that allows flexibility through the choice of

basis and test functions. In particular, FD and FV schemes can be recovered using

the FEM. The FEM also allows for great geometric flexibility since the formulation

is not dependent on the discretization, enabling the use of unstructured grids.

3.1 Introduction to DG

The first reported use of DG FEM was by Reed and Hill (1973) where DG was used

to solve the steady-state neutron transport equation. However, DG drew little atten-

tion until a series of papers (Cockburn and Shu, 1989, Cockburn et al., 1989, 1990,

Cockburn and Shu, 1998b), where the Runge-Kutta DG methods were described.

The extension of DG to higher order derivatives (Bassi and Rebay, 1997) made the

method applicable to solving advection-diffusion equations, which can be extended

to solving the Navier Stokes equations. Since the late 90’s, DG has seen a number of
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realistic applications in aerospace, solid mechanics, and electromagnetism to name a

few.

The major theoretical difference between CG and DG lies in the approximation

subspaces used. DG uses bases that are in normed space L2(Ω) while CG uses bases

that are in the Hilbert space H1(Ω), that is, the function has to be continuous across

elements. For a function f(x) to be in L2(Ω), it has to satisfy
∫

Ω
f(x)2dΩ < ∞,

whereas a function in H1(Ω) has to belong to a smaller space satisfying
∫

Ω
f(x)2 +

∇f(x)·∇f(x)dΩ <∞. Figure 3-3 illustrates the difference between a one-dimensional

DG space, and a one-dimensional CG space (both using a nodal basis). Notice for the

DG scheme the slope is undefined across the element boundary, and thus the solution

cannot reside in H1(Ω). Also note that in the example shown, the CG scheme has

four degrees of freedom while the DG scheme has six degrees of freedom due to the

doubling of information at element boundaries.

Figure 3-3: Difference between solution when using a discontinuous (left) or a con-
tinuous (right) basis

The duplication of unknowns is commonly quoted as a disadvantage of DG com-

pared to CG, because there is an inherent increase in computational cost associated

with a larger number of unknowns. However, proper studies comparing the error

level (Kubatko et al., 2009) suggest that this disadvantage may not be as dramatic

as stated for specific types of problems. The disadvantage of DG over FD methods

is increased development time as well as decreased computational efficiency per de-

gree of freedom. Apart from the efficiency issues, DG has a number of advantageous

properties that promote its use, including:
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• Localized memory access patterns. The local nature of DG elements allows

improved scalability for parallel architectures, and promise to take better ad-

vantage of newer Graphics processing units (GPUs) that are geared towards

massively parallel computations.

• Higher order accuracy. Since DG belongs to the FEM variational framework,

the same interpolation theory applies. That is O(hp+1) convergence, where p is

the order of the basis function used, can be obtained. Obtaining higher-order

rates of convergence for FV on unstructured grids is difficult, and requires infor-

mation from neighboring elements. Both FD and FV require large, non-compact

stencils. The advantage for DG, then, is obtaining high-order convergence while

maintaining the compact stencil.

• Adaptive strategies. The local nature of DG elements allows for a local element

interpolation function of arbitrary order with no restrictions imposed by neigh-

boring volumes. That is, the DG framework easily allows for non-conforming

discretization which facilitates the use of h (adapting the triangulation) and p

(adapting the order of the basis) adaptation strategies.

• Designed for advection-dominated flows. Where FV schemes struggle to achieve

higher-order accuracy for advection, DG along with an appropriate Riemann

solver easily generalizes to use arbitrarily high-order advection schemes for

smooth solutions.

• Superconvergence properties for dispersion and dissipation. DG demonstrates

superconvergence for the dispersion and dissipation of waves (Bernard et al.,

2008), making it well suited to wave propagation problems.

• Complex geometries. Because DG fits into the FEM framework, it is easily

generalized for use on arbitrarily shaped elements, making it suitable for use

with unstructured grids to model complex geometries.

By using DG, then, one gains a great deal of flexibility in terms of flux stabiliza-

tion schemes, geometry, and the order of the scheme at the cost of arguably greater
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computational expense compared to CG, FV, and FD.

Figure 3-4: Notation for plus and minus triangular elements

Finally, some convenient notation to mathematically express the jumps across

elements needs to be introduced. Often, in the literature, two elements bordering an

edge are labeled K+ and K−, with associated outward pointing normals n̂+ and n̂−

respectively, as shown in Figure 3-4. (Alternatively, sometimes one element is referred

to as the “left” while the other is referred to as the “right”). The mean values {{.}}

and jumps [[.]] are then defined as follows

{{v}} = (v+ + v−)/2 {{w}} = (w+ + w−)/2

[[v · n̂]] = v+ · n̂+ + v− · n̂− [[wn̂]] = w+n̂+ + w−n̂−

where v is a generic vector and w is a generic scalar. Note that the jump of a vector

is a scalar while the jump of a scalar is a vector. Furthermore, note that the jump

will be zero for a continuous function. Now it is possible to discretize an equation

using DG, as follows in the next section.
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3.2 DG formulation for advection problems

Consider the advection of a scalar quantity u with flux F(u) and source term S(u)

satisfying

∂u

∂t
+∇ · F(u) = S(u), in (0, T )× Ω (3.6)

u = gD, on ∂ΩD (3.7)

F(u) · n̂ = gN , on ∂ΩN (3.8)

u = u0, in (0, 0)× Ω (3.9)

over domain Ω from time 0 to time T , where gD is the value of the Dirichlet boundary

on ∂ΩD and gN is the value of the Neumann boundary on ∂ΩN . Let Pp(Γ) denote the

set of polynomials of degree at most p on a domain Γ. Discretizing the domain with

triangulation Th of non-overlapping elements Th =
⋃Nt
i=1 Ki where Nt is the number

of triangles, we seek an approximation uh of u with uh ∈ W p
h where

W p
h =

{
w ∈ L2(Ω) : w |K∈ Pp(K), ∀K ∈ Th

}
(3.10)

such that:

∫
K

{
∂uh
∂t

w + [∇ · F(uh)]w

}
dK =

∫
K

S(uh)wdK, ∀K ∈ Th (3.11)

For readers unfamiliar with the notation, equation 3.10 reads: take w to lie in the L2

space that exists on Ω such that w restricted to an element K lies in the polynomial

space Pp that exists on K. Equation 3.11 is not a complete DG formulation, since

currently the solutions on individual elements are not coupled. Following an approach

similar to the FV method, we integrate the advection term by parts

∫
K

∂uh
∂t

wdK +

∫
K

∇ · [F(uh)w] dK −
∫
K

F(uh) · ∇wdK =

∫
K

S(uh)wdK∫
K

∂uh
∂t

wdK +

∫
∂K

F̂(uh) · n̂wd∂K −
∫
K

F(uh) · ∇wdK =

∫
K

S(uh)wdK (3.12)
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where the second step follows from the Divergence theorem. Note that the notation

F̂(uh) indicates that the solution on the edge bordering two elements is a function

of both the bordering elements, thereby achieving a coupling between elements. In

order to satisfy conservation, the value of F̂(uh) is taken as constant on an edge,

that is, the two bordering elements will use the same value of F̂(uh). Equation 3.12,

then gives the weak formulation of 3.6, and the scheme will be complete as soon as

the functional form of F̂(uh) is specified. Alternatively, a strong formulation for the

problem can be found by taking an additional integration by parts in equation 3.12

as follows

∫
K

∂uh
∂t

wdK +

∫
∂K

[
F̂(uh)− F(uh)

]
· n̂wd∂K +

∫
K

[∇ · F(uh)]wdK

=

∫
K

S(uh)wdK (3.13)

where the second application of the Divergence theorem uses F(uh) instead of F̂(uh)

to obtain a unique formulation (otherwise we recover 3.11). While 3.12 and 3.13 are

mathematically equivalent, their numerical implementations are different, and there

are some advantages in terms of implementation and efficiency using one form over

the other for some problems. Also, after a re-arrangement of 3.13

∫
K

{
∂uh
∂t

+ [∇ · F(uh)]− S(uh)

}
wdK =

∫
∂K

[
F(uh)− F̂(uh)

]
· n̂wd∂K

it is highlighted that the residual on the borders of an element serves to couple

elements within a triangulation.

The F̂(uh) term is not present in CG FEM discretizations, but for DG schemes, the

proper specification of F̂(uh) can stabilize the numerical scheme. The problem with

CG FEM discretizations when it comes to advective problems is that CG schemes

inherently use a “central” difference type discretization for the flux. While this is

more accurate than an upwind scheme, it is well known that central schemes tend

to be unstable (Chapra and Canale, 2006) for advective problems. To stabilize the

advection scheme, then, a number of strategies can be employed, but all involve
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adding some numerical dissipation to the scheme. With CG, adding the dissipation

can be a complicated process, but with DG, this dissipation can very naturally be

added through the F̂(uh) flux terms. In order to choose an appropriate functional

form for F̂(uh) that adds the minimum amount of dissipation to the scheme, we make

use of the results from the well-studied Riemann problem.

3.2.1 Riemann solvers for DG

This section makes extensive use of chapters 2 and 6 of Hesthaven and Warburton

(2008) and the excellent text by LeVeque (2002). This section only serves as a brief

review, and the reader is referred to LeVeque (2002) for further study.

The Riemann problem is named after Bernhard Riemann, and it involves the

solution of a conservation law together with piecewise constant initial conditions

containing a single discontinuity. The Riemann problem is useful for understand-

ing hyperbolic systems of equations, because all the properties (such as shocks and

rarefaction waves for the Euler equations) appear as characteristics, or “Riemann in-

variants” in the solution of the Riemann problem. When solving conservations laws

in the DG framework, the discontinuity arises at the interface of two elements, where

a jump in the value of the properties occur, and theory from the Riemann problem

is used to construct the fluxes properly.

A general, non-linear hyperbolic system of equations in two-dimensions can be

written as

∂u

∂t
+
∂fx(u)

∂x
+
∂fy(u)

∂y
= 0 (3.14)

and in the DG context we are interested in finding an approximation for F̂(u) · n̂ =

fxn̂x + fyn̂y. Because we are only interested in a one-dimensional flux normal to the

boundary, we can make use of the theory for linearized hyperbolic one-dimensional
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systems. The above system is rewritten as

∂u

∂t
+
∂fx(u)

∂u

∂u

∂x
+
∂fy(u)

∂u

∂u

∂y
= 0

∂u

∂t
+ Ax

∂u

∂x
+ Ay

∂u

∂y
= 0

by using the chain-rule and letting Ax and Ay be the d× d Jacobian matrices, where

d is the dimension of the problem. Now we use

Â = Axn̂x + Ayn̂y

and we can consider the one-dimensional system

∂u

∂t
+ Â

∂u

∂n̂
= 0 (3.15)

where Â is a function of u. Now, hyperbolic systems of equations are characterized

by the fact that Â is diagonalizable, that is

Â = SΛS−1 (3.16)

|Â| = S|Λ|S−1 (3.17)

where we have also defined |Â|. Here Λ is a diagonal matrix with the eigenvalues

on the diagonals, and the columns of S contain the eigenvectors of A. Multiplying

equation 3.15 by S−1 and setting S−1u = I we have

∂I
∂t

+ Λ
∂I
∂n̂

= 0 (3.18)

where the entries of I are termed the “Riemann invariants.” Through this procedure,

one obtains a decoupled system of equations, where coupling remains only through the

eigenvalues of the system. Each scalar invariant Ij is advected at the speed λj, where

the speed is in the normal direction if λj > 0 and the speed is opposite the normal

direction when λj < 0. According to the theory of characteristics, the following is the
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solution for an initially discontinuous state if using n̂ = n̂+ and referring to Figure

3-4:

Ij = I+
j ifλj > 0 (3.19)

Ij = I−j ifλj < 0 (3.20)

With some manipulation (Hesthaven and Warburton, 2008) we can recover the form

for the flux

F̂(u) · n̂+ = Â{{u}}+
1

2
|Â|[[u]] (3.21)

where Â is a function of both u+ and u− for general non-linear fluxes. For linear

flux functions, the formulation is complete since A would not be a function of u±.

For non-linear fluxes, what remains is to choose the form for Â and |Â|, and this

distinguishes the various approximate Riemann solvers from each other. Note that

Âu ≈ F̂(u) · n̂ is a linearization of the flux. A natural choice yielding a consistent

flux is to let

F̂(u) · n̂+ = {{F(u) · n̂+}}+
1

2
|Â|[[u]] (3.22)

while appropriately choosing a form for |Â|. Two possible choices are

|Â| = |Ax({{u}})n̂x + Ay({{u}})n̂y| (3.23)

|Â| = |{{Ax(u)}}n̂x + {{Ay(u)}}n̂y| (3.24)

where care needs to be taken to ensure that |Â| has purely real eigenvalues for 3.24.

An often used approximate Riemann solver (due to its ease of implementation)

is the local Lax-Friedrichs solver, which assumes that there is one dominating wave

in the system, and enough numerical dissipation is added to stabilize the scheme for
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this wave. The Lax-Friedrichs solver is as follows

F̂(u) · n̂+ = {{F(u) · n̂+}}+
1

2
|λmax|[[u]] (3.25)

where λmax is the eigenvalue with the largest magnitude. The local Lax-Friedrichs

solver chooses the value of λmax locally on an edge.

3.2.2 Quadrature-free versus Quadrature based algorithms

Consider the numerical implementation of:

∫
K

F(u) · ∇wdK ≈
∫
K

F

(∑
i

uh,iθi(x)

)
· ∇θj(x)dK (3.26)

or∫
K

F(u) · ∇wdK ≈
∫
K

∑
i

F(uh,i)θi(x) · ∇θj(x)dK (3.27)

Clearly, there are two choices for discretizing the equation. For the first case (3.26) a

quadrature scheme is introduced to perform the volume integral

∫
K

F(u) · ∇wdK ≈
Ngp∑
k

F

(∑
i

uh,iθi(xk)

)
· ∇θj(xk)WkJ(xk) (3.28)

where W are the gauss weights and J(x) is a Jacobian (for the coordinate transfor-

mation between the master and current element) evaluated at gauss point x. For a

non-linear flux F, this scheme cannot be further simplified, and this integration needs

to be performed for every element. The total cost involves a series of matrix-vector

multiplies to interpolate the nodal/modal values onto the gauss points, followed by

another matrix-vector multiply to perform the integration. Also, normally the num-

ber of gauss weights are taken to be greater than the number of nodes or modes,

resulting in larger matrices and a larger computational expense.
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For the second choice of discretization, 3.27, we can write

∫
K

F(u) · ∇wdK ≈ F (uh,i)

∫
K

∑
i

θi(x) · ∇θj(x)dK

= CkF(uh,i) (3.29)

where Ck
ji =

∫
K
θi(x) · ∇θj(x)dK and can be precomputed. What remains is to

calculate the fluxes at the nodal points, or for each mode. Straight-sided triangles

have a constant Jacobian, in which case C can be precomputed for a reference element

and scaled with J to form Ck. In that case, no quadrature scheme is required, which

means only an evaluation of the fluxes and a single matrix-vector multiplication is

required. This is significant saving over the quadrature scheme. As an additional

benefit, the M−1C matrix can be precomputed, which results in additional savings.

However, the quadrature-free scheme commits a variational crime, which can result in

problems. For instance, the non-linear fluxes may suffer from aliasing errors causing

instabilities in the solution, but these may be remedied by some minor filtering of the

higher modes (Hesthaven and Warburton, 2008) at slightly reduced accuracy and rate

of convergence compared to the quadrature-based scheme. For a discussion on the

magnitude of the aliasing errors, which depend on the smoothness of uh and F(uh),

the reader is referred to Chapter 5 of Hesthaven and Warburton (2008).

3.3 DG with second order derivatives

The extension of DG to higher order derivatives is discussed in this section. Only

the extension to second order equations will be discussed in detail, and for a gener-

alization to higher orders, the reader is referred to Yan and Shu (2002). We could

consider the problem

∂u

∂t
+∇ · Finv(u) +∇ · Fvis(u, ∇u) = S(u) (3.30)
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where Finv(u) is the functional form for the inviscid fluxes, and Fvis(u, ∇u) is the

functional form for the viscous fluxes. However, since the advection and source term

have already been discretized in Section 3.2, we shall consider the simpler equation

∂u

∂t
+∇ · [−κ∇u] = 0 (3.31)

where we have taken Fvis(u, ∇u) = −κ∇u with κ a constant or some function of x.

A simple choice for the numerical flux F̂vis is obtained by calculating the derivative

of the solution within each element and then using a central flux, that is F̂vis =

{{κ∂u
∂n̂
}}. However, while the discrete matrix is relatively well conditioned, this scheme

was proven to yield unstable results in some cases, for example see chapter 7 of

Hesthaven and Warburton (2008). Little progress was made until Bassi and Rebay

(1997) suggested rewriting the equation as a system of first-order equations, in which

case 3.31 becomes:

∂u

∂t
+∇ · q = 0, in (0, T )× Ω (3.32)

q + κ∇u = 0, in Ω (3.33)

u = gD, on ∂ΩD (3.34)

q · n̂ = gN , on ∂ΩN (3.35)

u = u0, in (0, 0)× Ω (3.36)

The discretization of 3.32 proceeds the same as the discretization of 3.6 using the

same space Wh as defined in 3.10, such that we have

∫
K

∂uh
∂t

wdK +

∫
∂K

q̂h · n̂wd∂K −
∫
K

qh · ∇wdK = 0 (3.37)∫
K

∂uh
∂t

wdK +

∫
∂K

[q̂h − qh] · n̂wd∂K +

∫
K

∇ · qhwdK = 0 (3.38)

in the weak (3.37) and strong (3.38) forms. The discretization of 3.33 proceeds simi-
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larly, but first we need to define a new space V p
h

V p
h =

{
v ∈ (L2(Ω))d : v |K∈ (P p(K))d,∀K ∈ Th

}
(3.39)

where d is the dimension of the problem. V p
h is a vector space, which is different from

the scalar space W p
h defined in 3.10. Then proceeding to discretize 3.33 we have

∫
K

qh · vdK +

∫
K

κ∇uh · vdK = 0∫
K

κ−1qh · vdK +

∫
∂K

ûhv · nd∂K −
∫
K

uh∇ · vdK = 0 (3.40)∫
K

κ−1qh · vdK +

∫
∂K

[ûh − uh]v · nd∂K +

∫
K

∇uh · vdK = 0 (3.41)

in the weak (3.40) and strong (3.41) forms. What is left is to specify the form for the

numerical fluxes. The most general form of the flux (which follows from a stability

analysis) as written using the notation suggested by Castillo et al. (2000), is as follows:

q̂h = {{qh}} − C11[[uhn̂]] + C12[[qh · n̂]] (3.42)

ûh = {{uh}} −C12 · [[uhn̂]]− C22[[qh · n̂]] (3.43)

The values chosen for the parameters C11, C12, and C22 results in a number

of different schemes for elliptic problems using a DG discretization. Castillo et al.

(2000) also showed that C11 > 0 and C22 ≥ 0 is required for the DG method to give

a unique approximate solution. Arnold et al. (2002) analyzed some of the available

schemes under a unified framework, and more recent work by Cockburn et al. (2009)

analyzes the existing schemes under the new Hybrid Discontinuous Galerkin (HDG)

framework, which unifies not only DG methods for second order elliptic problems,

but also CG and mixed-methods. The following sections briefly describe some of the

popular methods for discretizing elliptic problems using DG.

Unless explicitly stated, the schemes described treat the boundary conditions in

a weak sense. That is, to satisfy the boundary conditions for the set of equations
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3.32-3.36 the following is used:

ûh = uD, on ∂ΩD (3.44)

q̂h = qh − C11(uh − uD)n̂, on ∂ΩD (3.45)

ûh = uh, on ∂ΩN (3.46)

q̂h = gN n̂, on ∂ΩN (3.47)

Also, the majority of schemes take C22 = 0. This serves to decouple the solution of u

and q, which means q can be solved independently of u, thereby allowing the scheme

to be less computationally expensive. The alternative is to solve for u and q simul-

taneously which is a strategy employed by some variants of the Local Discontinuous

Galerkin (LDG) method, and the HDG methods.

3.3.1 Internal Penalty (IP) method

The IP method for discontinuous elements were originally developed by Arnold

(1982), and uses the following

C12 = 0, C11 = τ, C22 = 0

q̂h = {{∇uh}} − τ [[uhn̂]] (3.48)

where τ is chosen appropriately according to the application. With this choice of

parameters, q̂h is penalized by τ times the jump in uh, and ûh uses the average

value of uh on the edge. The IP method combines sparsity with a low condition

number (comparable to the condition number when using central fluxes (Hesthaven

and Warburton, 2008)) for the discrete operator, which makes IP a popular method.
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3.3.2 The Local Discontinuous Galerkin (LDG) method

The LDG method was introduced by Cockburn and Shu (1998a), and uses the

following:

C12 =
n±

2
, C11 = τ, C22 = 0 (3.49)

With this choice of parameters, q̂h is penalized by τ times the jump in uh and n±

2

times the jump in qh, and ûh is penalized by n±

2
the jump in uh. Note that C12

can be arbitrarily chosen to be either associated with n̂+ or n̂−, the only restriction

being that C12 6= n̂+∀∂K+ ∈ K+. That is, at least one of the edges in the element

has to associate C12 with a different normal than the other edges. If this criteria is

not satisfied, the scheme can still be stable for non-zero τ , but if it is satisfied the

scheme is stable for τ = 0 and gives the minimum dissipation scheme (Hesthaven and

Warburton, 2008). Normally τ is chosen to be zero in the interior, and non-zero on the

boundary of the domain. A larger value of τ on the boundary enforces the boundary

conditions more strictly, where in the limit of τ = ∞ the boundary conditions are

enforced in a strong sense.

Using the LDG fluxes, we can rewrite ûh = {{uh}} −C12[[un̂]] and q̂h = {{qh}} −

C11[[uhn̂]] + C12[[q · n̂]] in a simpler form as follows:

ûh =
u+
h + u−h

2
− n±

2
· [u+

hn+ − u−hn+]

=
u+
h + u−h

2
∓ u+

h − u
−
h

2

=
(−C̃12 + 1)

2
u+
h −

(−C̃12 − 1)

2
u−h (3.50)

q̂h =
q+
h + q−h

2
− C11[[uhn̂]] +

n±

2
[q+
h · n

+ − q−hn+]

=
(C̃12 + 1)

2
q+
h −

(C̃12 − 1)

2
q−h − C11[[uhn̂]] (3.51)

C̃12 = ±1 (3.52)

This form highlights the “flip-flop” nature of the scheme, that is, if ûh is chosen from
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K+, q̂ is chosen from K−. The criteria for enabling a stable minimum dissipation

scheme for C̃12 is then ∣∣∣∣∣∑
∂K

C̃12

∣∣∣∣∣ < Ne ∀K ∈ Th (3.53)

where Ne is the number of edges in the element. With a clever implementation, C12

can be taken as C12 = 1 (or = −1) on all the edges (as defined globally) while still

enforcing the criteria to obtain the minimum dissipation scheme.

The minimum dissipation property makes LDG an attractive scheme for solving

second order elliptic equations using DG, however unlike the IP scheme, for example,

it has a non-compact stencil in higher dimensions, which means it takes information

from elements that are not direct neighbours. The problem can be overcome by

slightly modifying the fluxes, which is achieved by using the Compact Discontinuous

Galerkin (CDG) method described next. Finally, the condition number of the discrete

global operator is approximately twice as large as the condition number for the IP

method (Hesthaven and Warburton, 2008).

3.3.3 The Compact Discontinuous Galerkin (CDG) method

The CDG method is a modification of the LDG method developed by Peraire

and Persson (2007). A compact stencil is achieved in CDG by carefully studying

how the non-compactness of the q̂h fluxes arise in LDG. Referring to Figure 3-5 the

non-compactness of the LDG method can be explained.

Consider element 1. On the edge a, ûh is taken as u1
h for calculating q1

h and q2
h.

However, on edge b, ûh is taken as u3
h, which means the calculation of q2

h also contains

information from element 3. Due to the flip-flop nature of LDG, on edge a, q̂h is then

taken as q2
h which contains information from element 3, thereby resulting in a non-

compact scheme. The CDG method recognizes this situation, and to remedy the

problem it saves a version of q2
h that does not include the information from element

3.

The fluxes are, then, the same as the LDG fluxes, except that qh is replaced by qe,h
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Figure 3-5: Non-compactness of LDG in multiple dimensions.

which contains only information from neighboring elements, resulting in a compact

stencil:

C12 =
n±

2
, C11 = τ, C22 = 0

q̂h = {{qe,h}} − C11[[uhn̂]] + C12[[qe,h · n̂]]

(3.54)

The flux q̂h can be written in terms of C̃12 as

q̂h =
(C̃12 + 1)

2
q+
e,h −

(C̃12 − 1)

2
q−e,h − C11[[uhn̂]] (3.55)

CDG retains all the theoretical properties of LDG, and numerical experiments have

shown that the stability for CDG may even be enhanced compared to the stability of

LDG. The main advantage of CDG is the more compact stencil for efficient numerical

treatment of implicit time integration schemes, at the cost of slightly more expensive

flux evaluations for matrix-free iterative methods.

3.3.4 Hybrid Discontinuous Galerkin (HDG) method

The HDG method is the newest method discussed, with Cockburn et al. (2009),

Nguyen et al. (2009) being the main references in the literature. The derivation of

HDG methods are significantly different from the previous methods, but can be recast
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in the more standard form as follows:

C11 =
τ+τ−

τ+ + τ−
, C12 =

1

2

(
[[τ n̂]]

τ+ + τ−

)
, C22 =

1

τ+ + τ−
(3.56)

where the parameter τ is non-uniquely defined on each edge. With this choice of

parameters, q̂h is penalized by both the jump in uh and qh, and ûh is also penalized

by both the jump in uh and qh.

The derivation of the HDG scheme is as follows. First we define e = ∂K+
⋂
∂K−

in the interior and e = ∂K
⋂
∂Ω on the boundary. Then we define a new space:

Mp
h = {µ ∈ L2(εh) : µ|e ∈ Pp(e),∀e ∈ εh} (3.57)

That is, the space Mp
h is continuous on each edge of εh (as opposed to V p

h and W p
h

which are discontinuous). HDG is derived by noting that each element can be solved

independently of the other triangles if the value at the boundary of the element û

is known. The boundary data û can be expressed in terms of a new variable that

we define as λh ∈ Mp
h(0), where the notation Mp

h(0) refers to the space Mp
h that is

zero-valued on the boundaries of the domain:

û =

 PgD, on ε∂h

λh, on ε◦h

(3.58)

Here P is an operator that projects the boundary data, gD, onto û. Note that the

boundary conditions for HDG are enforced strongly for û, but this translates to a

weak enforcement inside the elements. The form for the flux q̂h is then chosen as in

Nguyen et al. (2009)

q̂h = qh + τ(uh − ûh) (3.59)

where τ can be taken as τ = O(1) for optimal convergence of elliptic problems.

This flux definition is not unique, but this choice gives convergent, stable results for

properly chosen values of τ . This allows the local problems to be written completely
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in terms of the boundary data ûh. The boundary data ûh then needs to be solved as

a coupled set of equations that enforce conservativity of the fluxes between elements.

The global equation solved is then

∫
εh

[[q̂]]dεh =

∫
ε∂h

gNµdΓN (3.60)

This solution method involves three steps:

1. The inversion of a local operator on each element to form the right-hand-side

vector (and global matrix)

2. The global solution of the boundary data

3. The local reconstruction of the solution on the element

The local operations are cheap because inversions are done on small dense matrices,

while the global solve contains considerably less unknowns than the original system

that would be obtained from an IP or CDG method. This procedure dramatically

increases the efficiency of solving elliptic problems with DG where implicit time inte-

gration is required. Implicit time integration may be necessary to overcome stringent

numerical stability criteria which limit the timestep size for explicit schemes.

As an additional benefit with this method, both uh and q̂h converge at the optimal

rate of O(p + 1) when τ = O(1) which allows a post-processed solution u∗h which

converges at O(p+2). This property is lost for large values of τ . The post processing

can be achieved by solving the following diffusion equation locally on each element:

∫
K

κ∇u∗h · ∇w∗dK = −
∫
K

q · ∇w∗dK, ∀w∗ ∈ Wp+1
h (3.61)∫

K

u∗hdK =

∫
K

uhdK (3.62)

For additional details about HDG, the reader is referred to Nguyen et al. (2009).
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3.4 Implementation issues

Implementation issues related to the non-linear fluxes have already been discussed

in section 3.2.2. The remaining issues include the data-structures (see Persson and

Peraire (2006)) which will not be discussed, the solution method for inverting large

matrices which is the topic of the Chapter 5, and the type of basis to use, which is

the topic of this section.

An example of a simple modal basis set in one-dimension of order p is the monomial

basis xp−1. Here the unknown coefficients are related to each mode, and are not

directly related to the solution.

Another popular basis set is the nodal basis, which is related to a set of p + 1

points x for a pth order basis set. An example of a nodal basis in one-dimension is the

Lagrange polynomial `i(r) =
∏p+1

j=1,j 6=i
r−xj
xi−xj that has the property `i(xi) = δij, where

r is an arbitrary point. That is, the basis related to point xi is equal to one at xi and

zero at all the other points x 6= xi.

There are some advantages and disadvantages to each approach (Karniadakis and

Sherwin, 2005). The modal approach handles p-adaptivity (adapting the order of

the basis function) more naturally, but requires a function evaluation of all the bases

to find the value of uh at any point in the element. The nodal approach has the

advantage that the expansion coefficients are equal to the approximate value of the

function at the specified nodal points x. Thus, to determine the value of uh at the

nodal points, no function evaluation is needed and simply the coefficient needs to be

read from memory.

For the purposes of this work, a nodal basis will be used. The details of creat-

ing this nodal basis is discussed in Hesthaven and Warburton (2008), and a similar

implementation is used for this work. The procedure is somewhat complicated be-

cause a close-form analytical solution for a nodal basis on a triangle does not exist.

That is, given a set of nodes and the order of a basis, an analytical expression de-

scribing the shape of all the basis functions has not been found. In order to con-

struct the discrete operators for a nodal basis, an appropriate modal basis is used.

65



The reason why this works is because the modal basis and nodal basis can be re-

lated to each other due to the uniqueness of the polynomial representation, that is∑N
i=1 uh,i(t)ψi(x) =

∑N
i=1 uh,i(t,xi)φi(x).

The overall procedure for using a nodal basis to construct the FEM operators as

follows:

1. Solve for modal coefficient which relate the modal and nodal bases

2. Evaluate the modal basis at specified points and using the modal coefficients

from step 1, find the values of the nodal basis at the specified points

3. Evaluate the derivatives of the modal basis at specified points and using the

modal coefficients from step 1, find the values of the derivatives of the nodal

basis at the specified points

4. Construct the finite-element operators, such as the mass matrix, using a com-

bination of steps 1, 2, and 3. Save the constructed matrices for later use.

First, the coefficients which related the modal and nodal basis functions are found.

In order to do this, the modal Koornwinder basis (Koornwinder, 1991), which is an

orthogonal polynomial basis constructed using Jacobi polynomials, is used to find the

coefficients uh,i(t,xi). In what follows we use uM and uN to differentiate between the

coefficients for the modal basis and nodal basis respectively. Then

VuMi = uNi (3.63)

where V is the Vandermonde matrix (see Trefethen and Bau (1997)) with Vij = ψj(xi),

that is, the jth modal function evaluated at the ith nodal point. We know that we

want the value of the ith nodal basis to be 1 at the ith nodal point (xi), and zero for

all the other nodal points x 6= xi. We can then solve for all the modes that will give

this polynomial basis

uMi = V−1uNi (3.64)
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where uNi is a zero vector except for a 1 at the ith entry.

Second, with this modal polynomial basis in place and the coefficients relating the

two bases, the value of the nodal basis can be evaluated at specific points. All that

is required is the value of the modal basis at the desired points and the solved values

of the modal coefficients uM , from the first step. The values of the nodal basis can

be found by multiplying through with another Vandermonde matrix

VgptsuMi = uNi,gpts (3.65)

VgptsV−1I = VN,gpts (3.66)

where Vgpts is the Vandermonde matrix for that modal basis that evaluates the func-

tion at, for example, the gauss points xi,gpts, and VN,gpts = φj(xi,gpts) is the Vander-

monde matrix for the nodal basis.

Third, we can similarly get the value of the derivatives of the nodal basis at the

gauss points by finding the derivatives of the modal function, and using

Vξ,gptsV−1 = Vξ,N,gpts (3.67)

where subscript (.)ξ indicates a derivative with respect to coordinate ξ.

Lastly, using the above method, the discrete elemental operators, such as the mass

matrix M, can be created and stored.

Two remaining issues include the choice of nodal locations and the condition

number of V . A well-behaved set of nodal locations allow accurate interpolation and

a poorly-behaved set results in interpolation with large oscillations. The condition

number of V for the modal basis can affect the accuracy when forming the discrete

operators. The first issue is dealt with by optimizing a set of nodal points to minimize

the Lebesque constant (see chapter 6 of Hesthaven and Warburton (2008)), and the

second is resolved by using an orthogonal modal basis such as the Koornwinder basis

(Hesthaven and Warburton, 2002).
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Chapter 4

Biogeochemical Reaction Equation

4.1 Introduction

The focus of this chapter is accurate numerical modeling of biogeochemical pro-

cesses in the ocean, to demonstrate understanding of DG FEM. For an introduction

to biogeochemical modelling, the reader is referred to Fennel and Neumann (2004).

This work is important in order to predict biological events such as plankton blooms.

Blooms of toxic phytoplankton can be harmful to humans and marine life. Also,

phytoplankton blooms are accompanied by an increased population of fish which can

be harvested for human consumption. Finally, being able to predict biogeochemi-

cal ocean processes enables the study of these processes which can lead to a better

understanding of the ocean ecosystem.

Biogeochemical models may contain a large number of biological or chemical

constituents. The simplest models often only use Nutrient, Phytoplankton, and

Zooplankton as constituents, and are commonly called NPZ models. More com-

plicated models (Besiktepe et al., 2002) can be adaptive and contain, for example, 24

constituents. Each constituent requires the solution of advection-diffusion-reaction

(ADR) equations, governed by

∂tϕi +∇ · (~uϕi)−∇ · κ∇ϕi = Sϕi(ϕ) (4.1)
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where ~u = [ux(x, y, t) uy(x, y, t)] is the velocity; κ is the diffusivity; and ϕ =

[ϕ1, ϕ2, ..., ϕn]T is a vector of constituents, i referring to the ith constituent, and

n being the total number of constituents. Note that the source term for constituent

i (Sϕi(ϕ)) can be a function of any number of the constituents. The source terms

describe “reactions”, and often lead to chaotic dynamics.

For this work a simple NPZ model (Flierl and McGillicuddy, 2002) is used with

the following source terms

SN(φN , φP , φZ) = −Uez/h φPφN
φN + ks

+ dPφP + dZφZ

+(1− a)
g

ν
φZ(1− e−νφP ) (4.2)

SP (φN , φP , φZ) = Uez/h φPφN
φN + ks

− dPφP −
g

ν
φZ(1− e−νφP ) (4.3)

SZ(φN , φP , φZ) = −dZφZ + a
g

ν
φZ(1− e−νφP ) (4.4)

where the parameters are explained in Table 4.1, the subscripts (.)N , (.)P , (.)Z refer

to Nutrients, Phytoplankton, and Zooplankton respectively, and lowercase z refers

to the depth coordinate decreasing towards the bottom and taken as z = 0 at the

surface. Note that three equations are not required, and the third constituent could

be calculated from a conservation equation. For instance, we could calculate φN

using:

φN = NT − φP − φZ (4.5)

where NT is the total biomass, which in general is a function of time and space,

but is taken as a constant. In this work all three equations are solved, where the

conservation equation 4.5 serves as a check of the conservativity of the numerical

scheme.

This Chapter is organized such that individual components of the complete nu-

merical solution are solved in the sections leading up to the final section, which solves

the full ADR equations.
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Para- Description Value 1/ [units]
meter Value 2
U Phytoplankton uptake rate 0.6 [1/day]
ks Saturation rate of phytoplankton 0.1 [µmol/L]
dP Mortality rate of Phytoplankton 0.016 [1/day]
dZ Mortality rate of Zooplankton 0.08/0.06 [1/day]
g Grazing rate of Zooplankton 0.1/0.13 [L/(µmol· day) ]
a Assimilation (efficiency) rate 0.4 []
h e-folding depth for light (photosynthesis) 17 [m]
ν Parameter for Ivlev form of grazing function 0.1 [L/µmol]
NT Total biomass 5 [µmol/L]

Table 4.1: NPZ equation parameter description and values

4.2 Test Problem setup

The domain of interest is shown in Figure 4-1. The depth of the domain is taken as

100 units, and the width of the domain is taken as 100 units. The bottom bathymetry

contains a half-ellipse with minor axis of 20 units in x and 100 units in z centered

at (x, y) = (0,−100) This elliptical obstacle models an idealized sea-mount which

perturbs the flow. A steady potential flow field is used, and the potential flow is cal-

culated numerically using an IP DG method (see Section 3.3.1) with MATLAB code

provided by Hesthaven and Warburton (2008). For the velocity field, slip boundary

conditions are used on the top and bottom boundaries by specifying the value of

the streamline at those boundaries, and periodic conditions are are used for the left

and right sides of the domain. Streamline of the flow field are plotted in Figure 4-1.

Specifically we take

ψ(x, z = 0) = 0 (4.6)

ψ(x, z = bottom) = −100 (4.7)

ψ(x = −50, z) = ψ(x = 50, z) (4.8)

where ψ is the stream function, giving a flow from left to right. The solved potential

flow field is scaled by factor of two, which is equivalent to multiplying ψ by two, or

taking ψ(x, z = bottom) = −200.
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Figure 4-1: Problem domain for two-dimensional biogeochemical reaction equations,
with velocity streamlines plotted.

For the biological constituents, no flux boundary conditions are specified at the

top and bottom boundaries, and periodic conditions are also taken at the left and

right walls. The initial concentrations are calculated from a steady-state solution for

no flow, and the equations are integrated for 100 days.

For this idealized study, the diffusion terms are set to zero, that is κ = 0, which

allows fully explicit methods to be used, because the numerical stability criteria does

not limit the size of the computations.

4.3 One-dimensional NPZ equations

Before solving the full test problem, the NPZ equations are solved in depth to

examine the behaviour of the non-linear source terms. First the steady state solution

is calculated in order to initialize the numerical solution with a biologically-feasible

field, and second time integration schemes are examined to ensure the solution is

stable for the chosen parameter sets.

4.3.1 Steady State Solution

The steady state solutions for this model in depth can be solved for by setting the

left hand side of equation 4.1 equal to zero and substituting the form of the source
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terms:

0 = −Uez/h φPφN
φN + ks

+ dPφP + dZφZ

+(1− a)
g

ν
φZ(1− e−νφP ) (4.9)

0 = Uez/h φPφN
φN + ks

− dPφP −
g

ν
φZ(1− e−νφP ) (4.10)

0 = −dZφZ + a
g

ν
φZ(1− e−νφP ) (4.11)

Add 4.9 and 4.10 together to find the steady state values of φP :

0 = −Uez/h φPφN
φN + ks

+ Uez/h φPφN
φN + ks

+ dPφP − dPφP + dZφZ

+(1− a)
g

ν
φZ(1− e−νφP )− g

ν
φZ(1− e−νφP )

0 = φZ

(
dZ − a

g

ν
(1− e−νφP )

)
a
g

ν
e−νφP = a

g

ν
− dZ

φ∗P =
−1

ν
ln

(
1− νdZ

ag

)
(4.12)

Given the biological parameters, equation 4.12 can be used to solve for the steady

state values of φ∗P , which is constant with depth. The (.)∗ notation here indicates that

φ∗P is not the value of φP used for initialization at all depths, because the solution

φ∗P is only valid till a certain depth beyond which light does not penetrate, and this

depth still needs to be calculated. However, in the remainder of the derivation, φ∗P is

treated as a known constant. Re-arranging equation 4.10 for φZ

φ∗Z =
νUez/hφP

g(1− e−νφP )︸ ︷︷ ︸
D(z)

φN
φN + ks

− νdPφP
g(1− e−νφP )︸ ︷︷ ︸

KφP

(4.13)
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and substituting this expression into 4.5:

φN = NT −D(z)
φN

φN + ks
+KφP − φP

φ2
N + ksφN = NT (φN + ks)−D(z)φN +KφP (φN + ks)− φP (φN + ks)

0 = φ2
N + φN (ks −NT +D(z)−KφP + φP )︸ ︷︷ ︸

B(z)

+ (−KφP −NT + φP )ks︸ ︷︷ ︸
CφP

φ∗N(z) =
−B(z)±

√
B(z)2 − 4CφP
2

(4.14)

With equations 4.12 and 4.14, the initial condition can then be numerically calculated,

given a numerical array of depths values z:

~φZ = max(Nt − φ∗N(z)− φ∗P , 0) (4.15)

~φP = φ∗P
~φZ

max(~φZ , 10−16)
(4.16)

~φN = NT − ~φP − ~φZ (4.17)

Using this procedure the initial steady state can be calculated numerically and used to

initialize simulations. When the correct root for φ∗N is chosen, a stable equilibrium is

obtained, but this is not the only equilibrium of the system. Burton (2009) describes

the other equilibria of this particular NPZ model, and also examines the stability of

the system for various parameters.

4.3.2 Temporal convergence

It is important to examine the behaviour of the equations over time for different

depths because, for certain parameter sets, the equations may become chaotic. With

chaotic solutions, the numerical solution may appear to be unstable, while the scheme

is correct. We found that this is particularly important for unstructured meshes where

element edges are not necessarily aligned with the depth. Therefore it is worthwhile

to look at the most simplified problem first, the zero-velocity, biological reactions
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only, system:

dφN
dt

= −Uez/h φPφN
φN + ks

+ dPφP + dZφZ + (1− a)
g

ν
φZ(1− e−νφP ) (4.18)

dφP
dt

= Uez/h φPφN
φN + ks

− dPφP −
g

ν
φZ(1− e−νφP ) (4.19)

dφZ
dt

= −dZφZ + a
g

ν
φZ(1− e−νφP ) (4.20)

An explicit first-order Euler scheme is compared to an explicit fourth-order low stor-

age Runge-Kutta (LSRK) scheme (Hesthaven and Warburton, 2008, Carpenter and

Kennedy, 1994) for time integration. If an implicit scheme was used, one would have

to to solve the non-linear source terms using, for example, a Newton-Raphson it-

erative solver at each time step. Here, since we utilize an explicit time integration

scheme, the size of the stable time step may be limited by the timescale of the biologi-

cal reaction instead of the time step size for the advection terms in the solution of the

two-dimensional ADR equations. Therefore many one-dimensional numerical tests

were conducted in order to find the limiting time-step sizes and appropriate initial

conditions for the biological equations. For the one-dimensional numerical tests, the

following parameters were varied:

• Timestep size: [4,2,1.01,1,0.99,0.9,0.5,0.25,0.1,0.005]

• Solver: [first order explicit Euler, fourth order explicit LSRK]

• Biological Parameters: [parameter set 1, parameter set 2]

• Initial Conditions: [Constant, Steady State with parameter set 1, Steady State

with parameter set 2]

Figures 4-2 and 4-3 show the final depth concentration profile of parameter set 1

and parameter set 2 respectively for the two time integration schemes after 100 days

starting from the steady state initial states of parameter set 2 and parameter set 1

respectively. The true solution is taken as the final profile found using LSRK with

a small time step size of 0.005 days.
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(a)

(b)

(c)

(d)

Figure 4-2: Concentration of biological constituents with parameter set 1 after 100
days of integration using the steady-state solution of parameter set 2 for the initial
condition (a). The bottom plot (d) is taken as the true solution and uses a small time
step with the LSRK time integration scheme. Plot (c) uses LSRK with a large time
step, and the plot (b) uses the Euler time integration scheme. The plots (a-d) show
the concentration in the depth of each constituent on the left, and the evolution of
the amount of each constituent at different depths (or their ’orbits’) on the right.
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a)

b)

c)

d)

Figure 4-3: Concentration of biological constituents with parameter set 2 after 100
days of integration using the steady-state solution of parameter set 1 for the initial
condition (a). The bottom plot (d) is taken as the true solution and uses a small time
step with the LSRK time integration scheme. Plot (c) uses LSRK with a large time
step, and the plot (b) uses the Euler time integration scheme. The plots (a-d) show
the concentration in the depth of each constituent on the left, and the evolution of
the amount of each constituent at different depths (or their ’orbits’) on the right.
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Of the two time integration schemes tested, the LSRK scheme performed the best.

The Euler time integration scheme is not as accurate as the LSRK scheme, since the

final profile using a time step of 0.9 days does not match the “true” solution, whereas

the LSRK scheme does match the “true” solution when using the large 0.9 day time

step. Both schemes become less stable/accurate at shallow depths when the time

step size exceeds 1 day. While the timescale of the equations depend on the relative

concentrations of the constituents and the depth, these results suggests that the

timescale is on the order of 1 day. A detailed analysis of the timescales involved with

this system is carried out in Burton (2009), where it was found that the biological

timescales vary with depth and the value of concentration at a point. In Burton

(2009), it was found that the timescales vary between zero and 0.2 days, which is

faster than what we found for numerically consistent answers. With the results of

Burton (2009) in mind, we use the LSRK scheme with a time step size smaller than

0.2 days. Note that for longer integration times, these results may not hold, and a

smaller time step size may be required for an accurate solution. Longer integration

times not only allow small errors to grow, but may put the biological system into a

state which has a faster response time, leading to a smaller time scale.

There are a number of differences between the solutions for the two different pa-

rameter sets. Recall, the second parameter set has a higher Zooplankton grazing rate

and lower death rate that the first parameter set. First, notice that the concentra-

tion profiles of all the constituents at the final time step is more variable in depth

for the second parameter set (see Figure 4-3) than the first parameter set (see Fig-

ure 4-2). This suggests a finer spatial discretization will be necessary to accurately

capture the physics for the second parameter set. Also, looking at the evolution of

the constituents or the orbits of the constituents at the shallowest depths, the second

parameter set evolves much faster than the first set at the shallowest depth (-10 [m]).

At the deepest depths (-37.5 and -50 [m]), the second parameter set evolves slower,

and at the depth of -25 [m], the evolution between the two parameter sets are simi-

lar. This suggests that the vertical behaviour between the two parameter sets will be

significantly different.
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As a final test, the simulations were initialized using the steady state solution cal-

culated using equations 4.12 to 4.17. It was found that the steady state solution was

maintained throughout the integration length of 100 days, and beyond, for both inte-

gration schemes. Therefore, for the integration time of interest, the time integration

scheme is stable.

4.4 Two dimensional tracer advection

4.4.1 Implementation

A number of different DG implementations were written for solving the advection-

diffusion equations (that is equation 4.1 with S = 0). The particular implementation

here uses the same LSRK time integration scheme used for the source terms along

with a quadrature-free DG spatial discretization in the strong form with a nodal basis.

Diffusive terms can be treated explicitly or implicitly with an LDG discretization. The

implicit implementation is limited to an implicit-Euler time integration, but could be

easily extended. Because only small values of κ are used for this test-case, implicit

time integration is not necessary for an efficient solution scheme.

Considerable efficiency was gained by using a quadrature-free scheme, and the

unfiltered use of the quadrature-free scheme was possible because the differential part

of the equations are linear.

4.4.2 Higher order Advection

Before solving the two-dimensional ADR equations on the test problem specified,

the numerical implementation was verified. A number of test cases were used to test

the convergence of the numerical implementation, and it was found that the optimal

p + 1 rate of convergence was achieved for a pth order basis function. The test cases

used include tracer advection through periodic domains with constant velocity fields,

tracer advection using a rotating fields, and tracer advection using a swirling velocity

field (Leveque, 1996). Additionally, a set of cases were run using the NPZ Test case
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Grid 1 Grid 2 Grid 3
Nt = 226 Nt = 856 Nt = 3438

p = 1 DOF 678 2,568 10,314
Np = 3 Time [s] 16 73 681

Time/DOF 0.0236 0.0284 0.0660
p = 2 DOF 1,356 5,136 20,628
Np = 6 Time [s] 34 218 2,551

Time/DOF 0.0251 0.0424 0.1237
p = 3 DOF 2,260 8,560 34,380
Np = 15 Time [s] 79 1,473 16,141

Time/DOF 0.0350 0.1721 0.4695

Table 4.2: Simulation time for various degrees of freedom using different order basis
functions. Timing reported using 3.4GHz Intel Linux nodes

described in Section 4.2 to examine the cost of using higher order advection schemes.

The results are reported in Table 4.2. Note that the cost over the simulation time

scales as Costtime ∼ C(T )Nt(p + 1)2 from Hesthaven and Warburton (2008), where

C(T ) is a function dependent on the total integration time T , Nt is the number of

triangles, and p is the order of the basis. From Table 4.2 a disconcerting trend is

observed. Even for a similar number of degrees of freedom, the solutions using higher

order basis functions are more expensive than lower order basis functions. The reason

for this is two-fold: first, because an explicit integration scheme is used, the stable

time-step size decreases when using higher order bases and more steps are required

to finish the integration; second, higher order bases inherently are more expensive

because the local matrix operators are larger, and the local operations scale as O(N2
p ).

These results would suggest that there is no advantage to using higher order bases

for calculations; however, the accuracy of the scheme also needs to be examined.

In order to illustrate the difference in accuracy for lower and higher order schemes,

a cosine bell was advected twenty times through a periodic unit square domain. The

final shape of the cosine bell for the lower and higher order schemes are compared in

Figure 4-4. Figure 4-4 shows that the solution using the higher order basis function

is more accurate for fewer degrees of freedom with a lower computational cost. That

is, the result using the lower scheme looses 20% of its original height due to numerical

diffusion, while the result with the higher-order scheme looks nearly identical to the
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Figure 4-4: Comparison of accuracy for twenty periods of linear advection of cosine
bell through periodic domain.

initial condition. These results illustrate an important point: high-order methods

cannot be compared to lower order methods on a degree of freedom (DOF) basis but

should be compared on an efficiency basis. The better method will have a higher

accuracy at the same efficiency, or a greater efficiency at the same accuracy.

4.4.3 Test case advection with potential flow field

In order to demonstrate spatial convergence, a series of meshes are required. These

are shown in Figure 4-5. The meshes were created using GMSH 1 (Geuzaine and

Remacle, 2009) which is a freely available mesh generator. Note that the elements

are not curved, which may lead to problems when using high order elements (Bernard,

2008).

Figure 4-6 illustrates the h and p convergence of the pure tracer advection problem

for the calculated potential flow field. In Figure 4-6, G#1 (for example) refers to the

use of of Grid 1 as labeled in Figure 4-5. The top row of Figure 4-6 shows the

solution being refined from left (coarser grid) to right (finer grid), but retaining the

same features, as the mesh is refined. The bottom row of Figure 4-6 shows the solution

using a lower (left) and higher (right) order basis function, but retaining the same

features as the order of the basis is increased. Qualitatively, this indicates that the

1www.geuz.org/gmsh
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Figure 4-5: GMSH created meshes used for convergence studies.

solution is converging when refining h, the mesh, and p, the order of the basis.

Next, temporal convergence is demonstrated for the test problem. Figure 4-7

shows that the same final flow is obtained for a relatively large time step (bottom

left plot) compared to a smaller time step (top left plot). Additionally, Figure 4-7

illustrates that the LSRK scheme allows a larger time step to be used than what is

allowed for the Euler time integration scheme (bottom right plot), which becomes

unstable for dt = 0.07. The top right plot shows the initial condition for this flow.

Thus, qualitatively, this indicates that the solution is converging when refining the

time step size, and LSRK allows a larger time step compared with the Euler scheme

to be used while maintaining numerical stability,

4.5 Solution of biogeochemical reaction equations

The numerical implementation for this work was compared with the code imple-

mented by (Burton, 2009), and the models agreed. Note that the stable time step

size for advection is smaller than the stable time step for biology. Therefore the

time step size of the ADR equations is limited by advection for the chosen biological

parameters.

The solution at the final time is shown in Figure 4-8 for the first parameter set,

and in Figure 4-9 for the second parameter set. Both simulations used third-order
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Figure 4-6: h − p convergence of purely advective test case for the NPZ test case
problem. G# refers to the grid use, as indicated in Figure 4-5, h refers to the size
of elements, and p refers to the order of the basis. The top row demonstrates h
convergence, that is the same solution is maintained as the mesh is refined. The
bottom row demonstrates p convergence, that is the same solution is maintained as
the order of the basis is increased.

Figure 4-7: Temporal convergence of purely advected flow. The reference solution is
calculated using a small (dt=0.018) time step (top left plot) and the bottom row gives
the solution for larger time steps using LSRK (left) and Euler (right) time-stepping
schemes. The initial conditions are plotted on the top right.
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Figure 4-8: Initial and final time step for NPZ two dimensional test case using pa-
rameter set 1 on grid 2 with third-order basis functions. The simulation took 446
seconds, and color bars shown are in [µmol].

basis functions on grid 2 (see Figure 4-5).

Examining the solutions, there are a number of interesting features. Note that the

flow field chosen, combined with the length of integration and the periodic boundary

conditions causes the fluid to pass over the obstruction approximately two times,

where the exact value depends on the specific depth. The final solution is significantly

different than the initial solution which shows that the advection has a significant

affect on the biological fields. Specifically, the final solution is less uniform containing

finer structures than the initial solution. In particular, there is a region of significant

Phytoplankton growth downstream and above the obstacle (depth around -30) that

develops within the first 50 days and is maintained throughout the simulation. What

the model is capturing is nutrient-rich water being brought up from below into the

light-penetrating region. These nutrients are consumed by Phytoplankton resulting in

a “bloom.” The maintenance and stability of this bloom is unique to this parameter

set and flow conditions, and cannot be expected in general.

There are also a number of differences between the two parameter sets. The second
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Figure 4-9: Initial and final time step for NPZ two dimensional test case using pa-
rameter set 2 on grid 2 with third-order basis functions. The simulation took 423
seconds, and color bars shown are in [µmol].

parameter set has a higher Zooplankton grazing rate (0.13 compared to 0.1), and a

lower Zooplankton mortality rate (0.06 compared to 0.08), which effectively increases

the amount of Zooplankton in the system. The effect of increased Zooplankton can

be seen in the Zooplankton and Phytoplankton plots, where a higher concentration

of Zooplankton and a lower concentration of Phytoplankton is present in Figure 4-9

than in Figure 4-8. Therefore, for the second parameter set, Phytoplankton is being

consumed at a faster rate by Zooplankton. With less Phytoplankton, less Nutrients

are being consumed, and more Nutrients remain in the system. A particularly inter-

esting feature is the smoothly varying Zooplankton field for parameter set 1. Because

this field is more uniform, one can conceivably gain some computational efficiency by

decreasing the order of the basis used to calculate this field. This observation leads to

the discussion in the next section, where different orders of basis functions are used

for the different constituents.

The numerical scheme performs as expected. The current implementation takes

420-450 seconds for 2,600 integration steps of 22,710 degrees of freedom. The cost
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of the solutions for higher values of κ were also examined. It was found that the

explicit schemes became prohibitively expensive for relatively small values of κ (grid

Peclet numbers < 100 and it was clear that an implicit solution would be necessary

for efficiently dealing with diffusion.

4.5.1 Variable order basis functions

As observed from the results in the previous section, some computational effi-

ciency could be gained by using different orders of basis functions for the different

constituents on the same triangulation. What is being proposed here is a p-adaptive

numerical scheme across constituents. h-adaptivity across constituents, that is, us-

ing different meshes for different constituents, is not considered. Normally adaptive

schemes that change the discretization do so for all variables. Often, a problem with

these schemes is finding an adaptation criterion based on one of the variables that

improves the accuracy of the solution for all the variables. This adaptation criterion

could also be based on multiple variables, but this results in regions of the mesh

being refined for a variable that does not need refinement in that region to improve

the accuracy of the simulation. The complexity increases dramatically when larger

systems, such as a 24 constituent biological model, is used.

What is being proposed here is that each constituent adapts independently of the

other two constituents based on constituent-dependent adaptation criteria. In order

to explore this new idea, our MATLAB code used was extended to allow different

constituents to use different orders of basis functions. As part of the extension, the

code allows spatially varying orders of basis to be used on the same mesh. However,

for these tests, only a global change to the order of basis function was made. Also,

since appropriate adaptive criteria for the biological constituents have not yet been

developed, the initially chosen order of basis function is maintained throughout the

simulation time. Eventually, in order to gain maximum efficiency, the order of the

basis function could be allowed to change dynamically, spatially, and independently

for each constituent.

To examine the feasibility of the proposed scheme, the test case for this section was
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Figure 4-10: Final time step for two dimensional NPZ test case using parameter
set 1 on grid 2 with third-order bases (top row) for Nitrogen, Phytoplankton and
Zooplankton, taking 446 seconds. The projection of this solution onto first order
bases is provided on the bottom row for comparison with the reference solution.
Color bars shown are in [µmol].

run on grid 2 using third order basis functions for the Nutrient and Phytoplankton

fields, and varying the order of the basis for the Zooplankton fields. The results of

these simulations are plotted in Figures 4-10 to 4-12. Note that the fields are plotted

both using the higher-order bases as well as the first order basis. The first-order basis

fields are found by interpolating from the higher-order basis, and this allows better

comparison of the results. Also, for reference, the solution using first order basis

functions for all constituents is plotted in Figure 4-13. Finally, the difference between

the fields in Figure 4-10 and Figure 4-11 are plotted in Figure 4-14, and the difference

between the fields in Figure 4-10 and Figure 4-12 are plotted in Figure 4-15.

Qualitatively examining the solutions for the biology, the Zooplankton solutions

look the same regardless of the order of basis used for this study. Also, the major

features for the Nitrogen and Phytoplankton fields remain qualitatively similar. What

is not obvious from the plots is the shift in the vertical position of the Phytoplankton

bloom. This is highlighted by the difference plots (Figures 4-14 and 4-15) where
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Figure 4-11: Final time step for two dimensional NPZ test case using parameter
set 1 on grid 2 with third-order bases (top row) for Nitrogen and Phytoplankton,
and second order basis for Zooplankton, taking 357 seconds. The projection of this
solution onto first order bases is provided on the bottom row for comparison with the
reference solution. Color bars shown are in [µmol].
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Figure 4-12: Final time step for two dimensional NPZ test case using parameter set 1
on grid 2 with third-order bases (top row) for Nitrogen and Phytoplankton, and first
order basis for Zooplankton, taking 296 seconds. The projection of this solution onto
first order bases is provided on the bottom row for comparison with the reference
solution. Color bars shown are in [µmol].

Figure 4-13: Final time step for two dimensional NPZ test case using parameter set 1
on grid 2 with first-order bases for Nitrogen, Phytoplankton and Zooplankton, taking
47 seconds. Color bars shown are in [µmol].
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Figure 4-14: Difference between fields calculated using a third order basis for Zoo-
plankton minus using a second order basis for Zooplankton. Note the top right plot
is a projection of the difference onto a first order basis for Zooplankton. Nitrogen
and Phytoplankton both use third order bases, and the difference projected onto first
order bases is plotted on the bottom row. Color bars shown are in [µmol].

Figure 4-15: Difference between fields calculated using a third order basis for Zoo-
plankton minus using a first order basis for Zooplankton. Nitrogen and Phytoplankton
both use third order bases and the difference projected onto first order bases is plotted
on the bottom row. Color bars shown are in [µmol]
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the phase error causes a large difference in the solutions compared with the highest

order basis function solution. Part of this error is due to the velocity field; for these

simulations, the velocity field is solved on the grid that the constituent uses, which

means the Zooplankton simulation uses a lower accuracy velocity field. The same

phase error is present in the Nitrogen field. Apart from the phase error, the shape of

the features in the Nitrogen and Phytoplankton fields are also different. In particular,

a small high concentration Phytoplankton region below the main bloom is not present

when the lowest order basis is used for Zooplankton. Qualitatively then, the solutions

are similar enough to further examine the possibility of this type of adaptive scheme.

Examining the difference plots (Figures 4-14 and 4-15), the largest difference in

the Nitrogen and Phytoplankton fields are in narrow regions. This is encouraging,

because it suggests that using higher order bases for Zooplankton in the small banded

regions of highest error may improve the solution. Refining the solution in the narrow

bands may not improve the accuracy because it is possible that the error originates

elsewhere and grows, showing up in the narrow bands. An adjoint-type refinement

metric would account for the linearized part of this event. Nonetheless, the difference

between the third and second order basis used for Zooplankton is smaller than the

difference between the third and first order basis used for Zooplankton, as expected.

Thus, refinement of the mesh somewhere will improve the accuracy of the solution,

and due to the local nature of the errors, local refinement should be sufficient.

Considering the simulation time, efficiency is gained by reducing the order of the

basis for Zooplankton. A 20% gain is realized by decreasing the order from three to

two (calculated using 100%·(T3−T2)/T3), wheras a 33% gain is realized by decreasing

the order from three to one. This translates into significant savings, which should

not necessarily be expected. Part of the efficiency of quadrature-free implementations

comes from eliminating the need to interpolate. With one constituent no longer on

the same grid as the other two, interpolation is required for calculating the value

of the source terms. Therefore, by reducing the order of the basis, computational

efficiency is gained because fewer degrees of freedom exist and matrix operators are

samller, but an additional interpolation cost is introduced. If local p-adaption is used
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within the mesh for a single consitutent, that is, various orders of bases are used for

the same constituent, an additional edge interpolation is introduced for quadrature-

free implementations. While not as expensive as the volumetric interpolations, this

cost does effect the decision to adapt the order of the basis according to the order

of neighboring elements. It is conceivable that decreasing the order of a basis in an

element could increase computational cost because if the element is surrounded by

neighbouring elements of equal and different order, the introduced interpolation cost

could overwhelm the efficiency gain from the lower basis.

In order to examine when it would be efficient to decrease the order of a basis

function, a detailed operation count for the current implementation was conducted.

It was found that adapting from a high order basis to a first order basis is always more

efficient. However, it was calculated that if a single element in a three-constituent

model discretized uniformly with 10th order basis functions is adapted down to a 9th

order basis, the calculations associated with that element would increase by a factor

on the order of 40%. Hence, it would be considerably more expensive.

The operation count emphasized which operations are crucial for maximizing the

numerical efficiency. Whether or not it is efficient to reduce the order of a basis for a

constituent on a single element depends on: the number and order of basis of the other

constituents on that element; and the order of the bases of the surrounding elements

for the same constituent. Thus, if the adaptation criterion determines that an element

for a particular constituent can be of lower order without sacrificing accuracy, the

scheme needs to ensure that efficiency is also gained by the adaptation before adapting

the basis.

Also, for an advanced treatment, the decision to adapt a group of constituents or

a group of elements could be coupled. That is, for example, if only one constituent

adapts, it may be more expensive; however if all the constituents adapt, efficiency

can be gained. If the adaptation criteria only considers the cost of one constituent

adapting at a time, then no adaptation may take place, whereas if the adaptation

criterion considers the cost of simultaneous adaptation of constituents, adaptation

may be efficient and should take place. Therefore, the most efficient adaptation
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criteria would consider the cost of simultaneous constituent and element adaptation.

The cost considerations that we found thus far have applied to quadrature-free

implementations, and do not apply in the same way for quadrature-based implemen-

tations. Because interpolation to gauss points is required in quadrature-based im-

plementations, the introduced volume and edge interpolation will not add significant

cost to the scheme, but will mainly contribute to the complexity of the code.

Finally, comparing the solution with uniformly third order basis functions to the

solution with uniformly first order basis functions, the need for an adaptive scheme is

highlighted. The small region of high Phytoplankton concentration below the main

Phytoplankton bloom to the right of the bathymetry is not detectable in the simula-

tion using only first order basis functions. While the solutions do appear similar, the

fields are not as smooth as the coarser solution would suggest. Properly implemented

adaptive schemes would refine the solution locally so that important small-scale fea-

tures will be resolved whereas a non-adaptive lower resolution scheme would not

resolve these features and they would be missed. Therefore, for improved accuracy

of simulations, adaptive schemes are crucial.

4.6 Conclusions and recommendations

Temporal, h and p convergence was demonstrated for each part of the solution

of the ADR equations. It was found that the LSRK integration scheme performed

better than the first order Euler scheme both for integrating the biological source

terms and the full ADR equations.

From the one-dimensional source terms tests, it was found that the second param-

eter set (higher Zooplankton grazing rate and lower Zooplankton death rate) had a

finer-scale structure in the vertical direction. This finding was repeated with the full

solution of the ADR equations.

The importance of comparing higher order to lower order schemes on an efficiency-

accuracy basis was highlighted through a purely advective test case. The higher order

scheme was more accurate, more efficient, and used fewer degrees of freedom than the
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lower order scheme.

Using explicit time integration schemes with a quadrature-free method resulted in

an efficient numerical scheme. However, it was found that explicit time integration of

diffusive terms was prohibitively expensive for grid Peclet number smaller than 100

(or large values of κ).

Due to the uniformity of the solution for Zooplankton with the first parameter set,

the use of a p-adaptive scheme (changing only the order of the basis function) across

constituents was examined. It was found that such an adaptation scheme is promising

for improving efficiency and accuracy of the solution, however an operation count

showed that numerical cost considerations need to be made. Specifically, additional

volume and edge interpolation operations result with p adaptation, and may increase

the cost of a quadrature-free implementation even when the adaptation reduces the

order of the basis on an element.

Finally, the need for adaptive algorithms was highlighted by noting that an im-

portant small-scale feature was unresolved in a coarse discretization, whereas a finer

discretization resolved this feature. Properly implemented adaptive algorithms would

locally resolve important small scale features and gain efficiency with coarse discretiza-

tions in regions where low accuracy is needed.

For the examples we considered, it is recommended that high-order quadrature-

free adaptive algorithms are used whenever possible for optimum accuracy and ef-

ficiency. Also, explicit time integration is recommended for advective operators,

whereas implicit time integration schemes are recommended for diffusive operators

due to prohibitively expensive numerical stability constraints.
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Chapter 5

Implicit Solution Techniques

The time integration of DG discretized equations is often achieved by explicit

methods, such as Runge-Kutta (RK) schemes and considerable efficiency is obtained

by using quadrature-free implementations. The problem with explicit time integration

is that the time step size is subject to the Courant-Friedrichs-Lewy (CFL) stability

condition. In a simulation with diffusion discretized using the Local Discontinuous

Galerkin (LDG) method (Cockburn and Shu, 1998a), the stable time step scales as

h2/p4 for high order basis functions (Persson and Peraire, 2006), where h is the char-

acteristic element size and p is the order of the basis function. This stability criterion

is very restrictive, and hence implicit schemes, which are not subject to the CFL

stability condition, are desirable. However, implicit methods require the inversion of

a large matrix, which may not be feasible to store for larger problems. Addition-

ally, to solve the Incompressible Navier Stokes equations using a Projection Method,

the inversion of a large matrix is also required. This section focuses on finding an

appropriate iterative solver and preconditioner combination to solve linear advection-

diffusion equations implicitly, with an emphasis on the preconditioner, but this work

also enables the solution of more complicated equations such as the Incompressible

Navier Stokes equations.
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5.1 Review of solvers utilized for DG Schemes

DG schemes are often integrated in time using explicit schemes, and in a series of

papers, Cockburn et al. (1990) introduced and analyzed their explicit Runge-Kutta

DG (RKDG) scheme. The RKDG scheme has been used with considerable success.

Since then, Strong Stability Preserving (SSP) RK schemes have been developed (Got-

tlieb et al., 2001). Explicit schemes make use of efficient matrix–vector multiplica-

tions, and are often used in practice. However, for large three-dimensional problems

with widely ranging space and time scales, it is computationally efficient to use im-

plicit time integration schemes when the CFL condition is too stringent. Some mixed

implicit/explicit strategies have been suggested (Ascher et al., 1997, Kennedy and

Carpenter, 2003), but the remainder of this chapter focuses on implicit schemes.

For high computational efficiency and lower memory usage, an efficient data-

structure is necessary. The compressed column format (Barrett et al., 1994) should

be avoided in favor of a dense block format which can minimize cache misses (Persson

and Peraire, 2006). Persson and Peraire (2006) store the block diagonal and off-block-

diagonal entries in separate arrays. A more sophisticated storage strategy is required

for the LDG discretization of the diffusive terms, since the final matrix has additional

non-zero entries. The more sophisticated strategy involves storage of a number of

smaller matrices. However, to further circumvent the storage problem associated

with LDG, Peraire and Persson (2007) proposed the Compact Discontinuous Galerkin

(CDG) discretization.

A proper preconditioner and solver is neccessary for efficient matrix inversion.

In Persson and Peraire (2006), the equations are discretized using LDG and solved

using the Quasi-Minimum Residual (QMR) method, the Conjugate Gradient Squared

(CGS) method, the Generalized Minimal RESidual (GMRES) method, and restarted

GMRES(m) with restart value m. A p1–ILU(0) preconditioner was proposed and

tested. This preconditioner consists of a block ILU(0) preconditioner used as a pre–

smoother for a two–level p–Multi-Grid (MG) scheme. The p–MG scheme works by

using an orthogonal Koornwinder expansion to project the residual from a higher-
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order basis function solution to a p = 1 solution (Persson and Peraire, 2006). The

correction is then calculated using a sparse-direct solver on the reduced problem

(Persson and Peraire, 2006). Three simplified test problems solving the compressible

Navier–Stokes equations were studied, and it was found that restarted GMRES(m)

with m = 20 worked well, especially when preconditioned with their proposed p1–

ILU(0) preconditioner (Persson and Peraire, 2006). Other researchers have also had

success with p–MG schemes (Fidkowski et al., 2005).

Later, Persson and Peraire (2008) solved generalized conservation laws using a

CDG discretization for the diffusive terms. In this paper, Persson and Peraire con-

sider several preconditioner options: Block Jacobi, block Gauss-Seidel (GS), and

block incomplete LU factorizations with zero fill-in ILU(0). Several other efforts are

also reviewed in Persson and Peraire (2008), most making use of MG methods. It

was found that the solution of pure-advection problems using an implicit scheme was

more robust than the solution of implicit advection-diffusion problems. The diffusive

terms were not adequately handled by an ILU(0)preconditioner, and it was shown

that diffusive problems often required a MG coarse-grid correction to improve con-

vergence and robustness (Persson and Peraire, 2008). Persson and Peraire (2008)

found that the p1–ILU(0) preconditioner outperformed all the other preconditioner

options, showing remarkable consistency and robustness over a range of test cases.

GMRES was found to be the fastest and most reliable solver, in general, at the cost of

increased computations and storage as the number of iterations increase Persson and

Peraire (2008). The combination of the p1–ILU(0) preconditioner with the GMRES

solver was found to be optimum in their case.
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5.2 Novel studies on Solvers and Preconditioners

for DG schemes

5.2.1 Description of solvers

The GMRES(m) and QMR solvers are a part of MATLAB, while the BiCGSTAB(l)

algorithm was obtained from Sleijpen (2009). Each have the following syntax

[X,FLAG,RELRES,ITER,RESVEC] = GMRES(A,B,RESTART,TOL,MAXIT,M1,M2,X0)

[X,FLAG,RELRES,ITER,RESVEC] = QMR(A,B,TOL,MAXIT,M1,M2,X0)

[X,RESVEC,ITER*] = CGSTAB(A,B,X0,TR0,OPTIONS,M1,M2)

where X is the solution; FLAG contains error information; RELRES gives the relative

error at the final iteration; ITER and ITER*1 give the number of iterations; RESVEC

is a vector of convergence history; A is the problem matrix; B is the right-hand-side

vector; RESTART is the number m for GMRES(m); TOL is the convergence criteria tol-

erance; MAXIT is the maximum number of iterations; M1 and M2 are the preconditioner

matrices 2; and X0 is the initial guess vector. The BiCGSTAB(l) implementation has

a slightly different, but similar syntax, the major difference being that the tolerance,

maximum iterations, value for l, and other options are passed to the function via the

OPTIONS structure. Also, a helper function was required to input function handles

instead of matrices for the matrix-free preconditioners.

GMRES(m)

The Generalized Minimum RESidual with restarts after (m) iterations algorithm

is based on the minimization of the residual rn = b −Axn where xn ∈ Kn and Kn

is the Krylov subspace formed after n steps of Arnoldi iteration (Trefethen and Bau,

1The original function from Sleijpen (2009) had to be modified to output this outer iteration
count

2if M2 is empty, it is not an LU-type preconditioner
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1997). The norm ‖H̃ny − ‖b‖e1‖ is minimized for y, and then xn = Qny (Trefethen

and Bau, 1997), where AQn = Qn+1H̃n and e1 = (1, 0, ..., 0). That is, the columns of

Qn are the first n columns of Q in the QR factorization of A, and H̃n is the upper

Hessenberg matrix obtained at the nth Arnoldi iteration. This algorithm works to

solve the problem because the ever-increasing size of the Krylov subspace approaches

the span of the columns of A. Minimizing the residual in the subspace of A is the

same as solving the problem exactly, and will happen when n = rank(A), if A has

full rank. The solution procedure orders A according to its dominant eigenvalues,

hence, its dominant reduced-rank (generalized inverse) component.

GMRES becomes more expensive both in terms of memory and computation as

n becomes large, hence restarted GMRES(m) is often used, where the algorithm

is restarted using xm as the initial guess after m iterations. Where the conver-

gence of GMRES is monotonic with increasing iterations (Trefethen and Bau, 1997),

GMRES(m) may stagnate (Persson and Peraire, 2008). Each iteration of GMRES(m)

requires one matrix-vector multiplication, but becomes more expensive asm increases.

QMR

The Quasi-Minimum Residual method is also a Krylov subspace minimum residual

method, but the Krylov subspace is different in this case. QMR is based on tridiagonal

biorthogonalization methods. Here the A matrix is factored into A = VTV−1, where

T is tri-diagonal, and V is non-singular (but not unitary) and the columns of V are

orthogonal to the columns of W = (V−1)∗. The Lanczos-like equations that follow

are

AVn = Vn+1T̃n (5.1)

A∗Wn = Wn+1S̃n (5.2)

Tn = S∗n = W∗
nAVn (5.3)

where Vn,Wn are m × n, T̃n and S̃n are (n + 1) × n non-hermitian tri-diagonal

matrices, and Tn and Sn are the upper n × n blocks of T̃n and S̃n respectively
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(Trefethen and Bau, 1997). From these equations a three-term recurrence relation

results:

Avn = T̃n−1,nvn−1 + T̃n,nvn + T̃n+1,nvn+1 (5.4)

A∗wn = S̃n−1,nwn−1 + S̃n,nwn + S̃n+1,nwn+1 (5.5)

Therefore, starting with arbitrary vectors V1, w1 such that v∗1w1 = 1, and setting

T̃1,2 = T̃2,1 = 0, and v0 = w0 = 0. Then, for each n = 1, 2, ... set T̃n,n =

w∗nAvn, determine vn+1, wn+1 from equations 5.4-5.5 (up to a constant), then find

T̃n+1,n−1, T̃n+1,n+1 subject to the normalization of w∗n+1vn+1 again using 5.4-5.5. Con-

sequently, the subspaces vn ∈ 〈v1,Av1, ...,A
n−1v1〉 and wn ∈ 〈w1,A

∗w1, ..., (A
∗)n−1w1〉

are formed (Trefethen and Bau, 1997). QMR chooses the normalized initial residual

(b − Ax0) as the initial V1, and also introduces a weighted scaling matrix (Freund

and Nachtigal, 1991). This algorithm uses a look-ahead Lanczos iteration in order to

avoid near-breakdowns 3 (Freund and Nachtigal, 1991). A disadvantage of this method

is that it needs the computation of A∗ (5.2), and subsequently requires also M∗ for

preconditioner M. Each iteration of QMR requires two matrix-vector multiplications.

BiCGSTAB(l)

The BiConjugate Gradient STABilized uses an l-degree minimum residual (MR)

polynomial (Sleijpen and Fokkema, 1993) and is yet another Krylov subspace mini-

mum residual method. This is a variant of the BiConjugate Gradient (BCG) method

(Trefethen and Bau, 1997). In BCG, the initial V1 is chosen as b. This has the effect

of choosing xn in the same subspace as GMRES (i.e. 〈b,Ab, ...,An−1b〉), but min-

imizing the residual in the 〈w1,A
∗w1, ..., (A

∗)n−1w1〉 subspace (Trefethen and Bau,

1997). The BiCGSTAB(l) algorithm tries to both smooth the convergence rate of

BCG, and account for the near-breakdown situations (Trefethen and Bau, 1997). The

BiCGSTAB(l) algorithm has one inner loop that consists of two parts. In the first

part, termed the “BCG part,” new BCG vectors are computed implicitly by com-

3Near-breakdown happen when wT
n+1vn+1 ≈ 0, wn+1 ≈ 0, vn+1 ≈ 0
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puting the iteration coefficients α and β explicitly (Sleijpen and Fokkema, 1993). In

the second part, termed the “MR part,” a locally minimum residual is calculated

using the Minimum Residual approach (Sleijpen and Fokkema, 1993). At the end

of the inner loop, the residuals and BCG vectors (including the current solution) is

updated (Sleijpen and Fokkema, 1993). Each outer step of BiCGSTAB(l) requires 2l

matrix-vector multiplications, but becomes more expensive for higher l (Sleijpen and

Fokkema, 1993). More information can be obtained from Sleijpen (2009) and Sleijpen

and Fokkema (1993).

5.2.2 Description of DG-specific Preconditioners

A preconditioner, M, is a matrix that approximates A and is easy to invert. Left

preconditioning involves left multiplication of M−1 to the original linear system. That

is, Ax = b becomes M−1Ax = M−1b. For M = A, M−1Ax = Ix = x = A−1b, the

problem is solved exactly, and for M = I, the original problem remains.

Block Jacobi

One of the most important preconditioners used in practice is the Jacobi pre-

conditioner (Trefethen and Bau, 1997). Here the preconditioner M is taken as the

diagonal entries of the A matrix. This is easily inverted, and for some problems it can

give significant improvements in computational time. For DG-discretized systems, a

block-Jacobi preconditioner may be used, where M is taken as the Np × Np blocks

on the diagonal of A. It is more expensive to invert this M, but can be done on

an individual block-by-block basis. The expense of this inversion becomes non-trivial

when using higher-order basis functions. In Persson and Peraire (2008), the cost for

computing a Jacobi factorization (including the cost of computing the matrix A) is

given as (2/3)N3
pNt where Nt is the number of elements in the discretization, and Np

is the number of degrees of freedom in an element. The cost of M−1x is also given in

Persson and Peraire (2008) as (2)N2
pNt.
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Block Gauss-Seidel

The Block Gauss-Seidel (GS) preconditioner is similar to the Block Jacobi pre-

conditioner, but keeps both the diagonal blocks and all the lower (or upper) blocks.

For some specific problems, usually pure advection, the GS preconditioner has been

shown to perform significantly better than the Jacobi preconditioner, but for gen-

eral problems only a marginal improvement can be expected (Persson and Peraire,

2008). The inversion of this matrix is difficult to obtain directly, but by using a block

back-solve, the effect of the inverse can be obtained. The cost for computing the

preconditioner is again given from Persson and Peraire (2008) as (2/3)N3
pNt, and the

cost of M−1x is given as (D + 3)N2
pNt, where D is the dimension of the problem.

ILU(0)

In general, when computing the LU factorization of a sparse matrix, the sparsity

of the matrix is lost in the computed L and U matrices. That is, L and U are more

dense and require additional storage. For large systems of equations, this additional

storage is prohibitive, not to mention the cost of essentially directly computing the

inverse of A. The incomplete LU factorization with zero fill-in calculates the LU

factorization of the matrix A, but does not allow the newly computed L and U

matrices to have a sparsity pattern different from that of A. Not only does this

reduce the storage requirements, but also the computational cost. Also, with a DG

discretization, making additional assumptions about the mesh can further reduce the

computational cost of the ILU(0) factorization (Persson and Peraire, 2008). The cost

for computing the ILU(0) preconditioner is greater than that of the Jacobi and GS

preconditioners, and is given from Persson and Peraire (2008) as (2D+8/3)N3
pNt. The

computation of M−1x is also given in Persson and Peraire (2008) as (2D + 4)N2
pNt,

which is the same as calculating the matrix-vector product Ax.
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p-Multi-Grid (MG)

MG preconditioners are typically good at handling low-frequency components

of the original problem, leaving the high-frequencies to be solved by other means

(Trefethen and Bau, 1997). MG preconditioners are usually calculated by solving a

fine-grid problem on a coarser grid, and then transferring the coarse-grid solution back

onto the fine-grid (Trefethen and Bau, 1997). This transferral is trivial for structured-

grid discretizations, but for unstructured grids, the transferral of the solution is less

straight-forward. Fortunately, for DG discretizations with high-order basis functions,

an alternative exists. Instead of projecting the solution onto a coarse grid, the solution

can be projected onto a lower-order basis function. This method is used successfully

by a number of researchers, including Persson and Peraire (2008). The cost for this

preconditioner is not given in Persson and Peraire (2008), but depends on the order

of basis function (p), the number of elements Nt, and the solution method (usually

sparse-direct) used for the coarse grid.

5.3 Results

Equation 3.30 is discretized using a nodal (DG) FEM scheme with appropriate

boundary conditions as discussed in Chapter 3. The exact problem being solved is

discussed in detail in Chapter 4. The resultant discretized system of equations gives

rise to a block matrix structure, each block being associated with a single element.

Due to the definition of the fluxes F̂inv and F̂vis, there are also off-block-diagonal

entries in the matrix. The number of off-diagonal entries will depend on the type of

discretization used for the viscous terms, where an LDG discretization will lead to a

maximum of nine off-diagonal block entries, a CDG or IP disretization will lead to

a maximum of three off-diagonal block entries, and an HDG discretization will lead

to a smaller system with smaller blocks and a maximum of four off-diagonal block

entries. In all cases, for a large number of elements, the final matrix will be reasonably

sparse. An example of the sparsity pattern for both an 8–element and 104–element

discretization on a structured triangular grid using the LDG fluxes is shown in Figure
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5-1.

Figure 5-1: Matrix sparsity patterns for fourth order (p = 4) basis functions with 8
(left), and 104 (right) elements

The size of the blocks depend on the order, p, of the basis functions, the type

of element (triangular or quadrilateral), and the dimension of the problem. The

number of unknowns Np in a two-dimensional triangular element scales as Np =

1
2
[(p+ 1)(p+ 2)], while the number of unknowns on each edge scales as Nfp = (p+ 1)

for one-dimensional edge elements. As an example, different order triangular elements

are plotted in Figure 5-2.

Figure 5-2: Location of unknowns on master triangle for various order (p) of basis
functions
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The MATLAB implementations are briefly discussed below. As a cautionary note,

the efficiency of the various schemes do not reflect a realistic, optimized implemen-

tation. Some effort was expended in order to compare the cost of different precon-

ditioners, but the main criteria for preconditioner selection should be the iteration

count.

5.3.1 Constructing the A Matrix

An implementation for explicit time integration can be used directly by iterative

matrix solvers because the explicit implementation essentially provides an Ax matrix-

vector multiplication. Nonetheless, for the purposes of this study it was convenient

to have the matrix available for forming the various preconditioners. Also, with the

matrix available, various properties of the matrix, including the sparsity pattern and

eigenvalues could be easily examined. Thus, A is formed in all cases for this study.

However, in practice a DG-specific matrix-free implementation is desirable, since it

is possible to take advantage of the structure of the DG-specific matrix to improve

efficiency and reduce storage.

5.3.2 Preconditioners

A number of preconditioners were tested. Most were implemented ourselves, while

the MATLAB implementation of the ILU(0) preconditioner was used. The following

preconditioners were tested:

1. None: M = I.

2. Upper: M=triu(A), this is the non-block version of the Block GS preconditioner,

and uses the upper triangle of A

3. Lower: M=tril(A), this is the non-block version of the Block GS preconditioner

and uses the lower triangle of A

4. Jacobi: M=diag(diag(A)), this is the classical Jacobi preconditioner
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5. ILU(0): [M1 M2]=ilu(A,setup.type=’nofill’), this is the ILU(0) implemen-

tation in MATLAB

6. Block ILU(0): This is essentially the same as the Block Jacobi preconditioner,

but the LU factorization is used to compare the computation time of various

implementations.

7. Block Jacobi: This preconditioner is described in §5.2.2. Two implementations

are used, and are described in below.

8. Block GS: This preconditioner is described in §5.2.2. Three implementations of

this preconditioner were used, and are described below.

9. MG: This preconditioner is described in §5.2.2, and the implementation is dis-

cussed below.

5.3.3 Block Jacobi Preconditioner

Essentially three implementations of this preconditioner was used, and it was

expected that the same number of iterations would result for the different implemen-

tations, while the computational time would differ. This enabled the comparison of

computation time for the different implementations. Since neither an efficient Block

GS nor p-MG implementation existed in MATLAB, having a similarly-implemented

Block Jacobi algorithm allows the comparison between preconditioners based on the

number of iterations with the ability to extrapolate that result to the computational

time of an efficient implementation of the algorithm.

The first two implementations were expected to have similar computational time.

In the first “BlockILU” implementation, the LU factorization of the block diagonals

were computed, and supplied to the solver functions as M1 and M2 respectively (see

§5.2.1 for the solver syntax, and the meaning of M1, M2). The second “BlockJacobi”

implementation simply supplied the Block Jacobi matrix as M−1x left empty. The

third “BlockJacobi2” implementation passed a “function handle” instead of a matrix

106



to the solver functions. The function passed in computes the product M−1x and re-

turns x. For this implementation, M−1 was pre-computed block-by-block and passed

to the function. Hence, the only computational expense was due to the matrix-vector

multiplication.

5.3.4 Block Gauss-Seidel Preconditioner

The first MATLAB implementation of the Block GS preconditioner is similar to

the second implementation of the Block Jacobi preconditioner, that is, M1 is supplied

to the solver with M2 left blank. Here M1 contains the lower triangular blocks of

A (that is, the lower triangle of A including the the upper portions of the block-

diagonal entries). This implementation was found to run prohibitively slowly, but

was useful for debugging the other implementations. The main difficulty with this

preconditioner was obtaining an efficient implementation for testing purposes. A

number of implementation were attempted, and these are described below.

The first attempt at a more efficient implementation was similar to the third Block

Jacobi implementation, that is a function that performs the M1−1x was passed to the

solver. Here, the inverse of the blocks on the diagonal are precomputed and stored

in M1, and the MATLAB code is as follows:

1 x(1:Np)=M1(1:Np,1:Np)*x(1:Np);

2 for k=2:Nt

3 range=(k-1)*Np+1:k*Np

4 x(range)=M1(range,1:Np)*( x(range)...

5 +A(range,1:(k-1)*Np)*x(1:(k-1)*Np) );

6 end

Unfortunately, this implementation took even longer to run than the original.

After writing a benchmarking script it was identified that line 5 of the above algorithm
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was responsible. This operation consisted of the multiplication of the sparse lower-

diagonal blocks with the newly-solved-for vector. Even though the matrix was small,

it was a sparse-matrix multiply, which has some associated overhead in MATLAB

causing the computation to slow considerably. Coding this algorithm in C and using

it in MATLAB through the mex interface also did not prove helpful. Since a sparse

multiplication was not used in the C implementation, this code still ran prohibitively

slowly. To partly overcome the overhead problem in the MATLAB implementation

an if statement was included to only do the multiplication when necessary. The

modifications to the algorithm are as follows:

1 x(1:Np)=M1(1:Np,1:Np)*x(1:Np);

2 for k=2:Nt

3 range=(k-1)*Np+1:k*Np

3.1 if nnz(A(range(1),1:(k-1)*Np)

4 x(range)=M1(range,1:Np)*( x(range)...

5 +A(range,1:(k-1)*Np)*x(1:(k-1)*Np) );

5.1 else

5.2 x(range)=M1(range,1:Np)*x(range);

5.3 end

6 end

Unfortunately, the overhead of the if statement and the nnz function was nearly

the same as the overhead of the sparse-multiply, so there were only marginal savings.

This implementation was tested but never used since it still ran prohibitively slowly.

In the next attempt, instead of using the sparse entries of A, the off block diagonal

entries were reconstructed using the DG operators, and is as follows:

1 x(1:Np)=M1(1:Np,1:Np)*x(1:Np);

2 for k=2:K
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3 range=(k-1)*Np+1:k*Np

4 x(range)=M1(range,1:Np)*( x(range)...

5 +LIFT*(Scale(range).*x(vmapP(range)) );

6 end

Here LIFT, Scale, and vmapP are a matrix operator, a scaling-factor array, and

an index-of-neighboring-nodes array respectively. Essentially, instead of invoking the

sparse-matrix multiplication routines, this algorithm rebuilds the entries of the ma-

trix, while collects only the necessary data (using vmapP). This results in faster,

dense-matrix multiplications. This implementation, “blockGS,” only includes advec-

tive terms, since the inclusion of diffusive terms requires significant re-coding due to

the intermediate q variable, and in practice would be implemented along with the func-

tion performing the matrix-free, Ax multiplication. This Block GS preconditioner is

expected to perform best for advection-dominated flows (Persson and Peraire, 2008),

improving the rate of convergence more than the pure Jacobi preconditioner. The de-

crease in run-time for the new implementation is substantial. From O(10−3)-O(10−4)

to O(10−5) seconds per multiplication, giving a 10-100 fold decrease in computational

time. Hence, this type of implementation should be used for realistic applications.

With the Block GS implementation, it was also possible to include the flux con-

tributions of the un-updated x vector. However, leaving the flux contributions of the

un-updated x vector resulted in poorer performance, hence they were removed by a

switch (incorporated through the scale-factor array).

Finally, in order to also include the diffusive effects with the block GS precon-

ditioner, a final implementation where the entire lower-block matrix is pre-inverted

was utilized. This was the standard implementation used for these studies, and all

numbers reported use this implementation.
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5.3.5 p-MG Preconditioner

The first p-MG implementation, “MG,” was similar to the third implementations

of both the Jacobi and GS preconditioners. A function computing M−1x was passed

to the solver. Here M−1 = R1−>phM
−1
p=1Rph−>1, where Rph−>1x restricts x from

a higher order basis function (p = ph) to a first order basis function (p = 1), and

R1−>phx prolongate the solution. In this implementation, M−1
p=1 was pre-computed,

so the only cost of the M−1x calculations were due to the restriction/prolongation

and matrix-vector multiplications.

Note, the projection/restriction operators are normally defined for a modal basis

function, where u(~x) =
∑

i u
M
i ψi(~x). The restriction operator is then easily defined

by simply truncating the number of modes. This is different from an interpolation,

and caution is required when implementing a p-MG scheme when using a nodal basis.

The nodal basis used for this work can be presented as VuM = uN , where Vij =

ψj(xi) is a generalized Vandermonde matrix, and uN is the approximate value of u

at the nodal points xi. Interpolation of the solution works as follows:

uM = V−1
N uN

uN1 = VN1û
M = VN1V−1

N uN

uM1 = V−1
1 uN1

uN = V1Nu
M
1 = V1NV−1

1 uN1 (5.6)

where (VN)hj = ψj(x
N
h ), (VN1)ij = ψj(x

1
i ), (V1)ik = ψk(x

1
i ), (V1N)jk = ψk(x

N
j ),

h = 1, ..., N , j = 1, ..., N , i = 1, 2, 3, and k = 1, 2, 3. Here x1 represents the nodal

points for the p = 1 basis, and xN represents the nodal points for the p = N basis,

and the subscript (.)1 on u indicates the approximate solution on the p = 1 basis.

Interpolation is NOT the same as restriction/prolongation, however, because the

interpolant fails to remove the modes that cannot be solved for on the coarser p = 1

grid. That is, in the interpolating case, the higher order basis is not contained in the

lower order basis. This has consequences for the Galerkin formulation used where
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the residuals on both the low and high order bases are set orthogonal to their own

basis. In the interpolating case when solving on the coarse grid, one attempts to set

information from the higher order basis orthogonal to the lower order basis. However

the information contained in the higher order bases is not contained in the lower order

basis, and the correction calculated on the coarser grid then attempts to correct for

the errors from the higher order modes even though it cannot. If a collocation scheme

was used instead, this interpolating strategy may be appropriate, but here we need

to be more careful. Instead, the operations should be as follows:

uM = V−1
N uN

uME = EuMN

u1,E = V1u
M
E = V1EV−1

N uN

uM1 = V−1
1 uN1

eM1,P = ET ê1 = ETV −1
1 e1

ePN = VN ê
P
1 = VNE

TV −1
1 e1 (5.7)

The only difference from the case of the interpolation is that here we have included a

E matrix. E ∈ <N,3 is basically a cutoff filter, and for this particular implementation,

Ei,j =

 1 (i, j) = [(1, 1) (2, 2) (N + 2, 3)]

0 otherwise
(5.8)

With the E matrix included, the correct restriction/prolongation operator is defined.

A more realistic implementation was also attempted, where the residual r = b−Ax̃

instead is solved on the coarse grid ẽ = (RTA−1
1 R)r, and the correction is applied as

x = e + x̃. Some additional coding was required, but the function from the “MG”

implementation could be re-used. The new MG implementation was combined with

ILU(0) preconditioned GMRES(m). It was desirable to use BiCGSTAB(l) however

the function from Sleijpen (2009) would not accept an initial guess, and hence could

not be restarted in a loop. Hence, GMRES(m) was used instead. The algorithm was
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as follows:

for i=1,2,...

[X] = GMRES(A,B,RESTART,TOL,MAXIT,M1,M2,X); %Smoothing

Resid=B-A*X; %Residual

Resid_1=R*Resid; %Restriction

E_1=inv(A_1)*Resid_1; %Coarse grid solution

E=R’*E_1; %Prolongation

X=X+E; %Correction

In one step, the scheme is x = (I−RTA−1
1 RA)x+RTA−1

1 Rb. Here R is a restriction

operator and its transpose ,RT , is the prolongation operator; A1 is the matrix to

solve the problem using p = 1 order basis functions, and A is the matrix to solve

the problem for a higher order basis function; x is the approximate solution at the

current iteration; and b is the right-hand side vector of the Ax = b system.

5.3.6 Numerical Experiments

A brief description of the functions and scripts written for this study can be found

in Appendix B.

A number of numerical benchmarks and tests were run, and each is briefly de-

scribed below. The primary benchmark starts with a wide range of solver, precon-

ditioner, and flow configurations to identify promising directions to investigate. The

benchmarks that follow test progressively fewer combinations, until only two solver

choices with one preconditioner remain. The performance of these two solver/pre-

conditioner combinations are then analyzed to identify whether additional improve-

ments can be made to the convergence rate. Finally, to see if there is any improvement

is possible, a combined ILU(0) and MG preconditioner is tested.

The numerical experiments were conducted on a 2.4 GHz Intel desktop computer

running Windows XP. The domain used has 757 triangles and 1162 faces, and uses
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4th order basis functions for a total of 11,355 degrees of freedom. The HDG imple-

mentation reduces the number of global unknowns to 5,810.

The primary benchmark was run with both and HDG and LDG discertizations.

The magnitude of the velocity varies throughout the domain, and the scaling factor

is taken as one for cases where advection is turned on, and zero when advection is

turned off. The value taken for the diffusivity is taken as one when diffusion is on

and zero when it is off.

All the LDG simulations are initialized with the previous timestep, whereas the

HDG simulations are initialized using a zero vector for the input. At large values

of timestep size, the initial guess vector will not have a large impact on the solution

time. In the reported results the system is solved once for the LDG discretization,

and three times for the HDG discretization. For the rest of the numerical tests, only

the performance of LDG discretizations were examined.

Primary benchmark

The primary benchmark tests the performance of all the solvers for all the dif-

ferent preconditioners for different flow parameters, a total of 900 combinations. In

summary, the following parameters were varied:

• Discretization: [LDG, HDG]

• Solvers: [MATLAB’s “Slash”’ solver, GMRES(m) with m = 20, BiCGSTAB(l)

with l = 10, QMR]

• Preconditioners: All the preconditioners listed in §5.3.2.

• Advection: [No advection, advection]

• Diffusion: [No diffusion, Diffusion]

• dt = [0.2, 2, 20, 200, 2000]

Note that cases with large timestep sizes are examined because they are important

to advance solutions toward steady-state, and this also follows the work of Persson
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and Peraire (2008). This benchmark was run twice and the number of iterations were

consistent.

GMRES(m) and BiCGSTAB(l) restart benchmark

The purpose of the “restart” benchmark was to find the best value of m and

l for GMRES(m) and BiCGSTAB(l) respectively, with a total of 585 tests. This

benchmark varied the following parameters:

• Discretization: LDG

• Solvers: [GMRES(m) with various m, BiCGSTAB(l) with various l]

• m, 2× l = [2, 4, 8, 10, 12, 14, 16, 18, 20, 24, 30, 40, 50]

• Preconditioner: ILU(0).

• Advection: [No advection, advection]

• Diffusion: [No diffusion, Diffusion]

• dt = [0.2, 2, 20, 200, 2000]

This benchmark was run twice and the number of iterations were consistent.

BiCGSTAB(l) with l = 5, 9 ILU benchmark

Here the behavior BiCGSTAB(l)with l = 5, 9 using different ILU preconditioners

was examined for advection-diffusion with a CFL number of 10,000. In this case, the

computation time of the preconditioner was important, and hence was included in

the benchmark time. The following parameters were varied:

• ILU factorization options

setup.type = [’nofill’, ’ilutp’]

setup.droptol=[100, 10−1, 10−2, 10−3, 10−4, 10−5, 10−6, 10−7, 10−8, 10−9,

10−10]
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Convergence history test

In the convergence history test, GMRES(m) with m = 20, BiCGSTAB(l) with

l = 10, and QMR are compared with and without the same ILU(0) or p-MG precon-

ditioner for an LDG discretization. Only a timestep size of 200 is considered, and all

three flow regimes are considered. The convergence history is plotted with and with-

out the preconditioner (for both ILU(0) and p-MG), and the 50 largest and smallest

scaled eigenvalues of the ILU(0) preconditioned and un-preconditioned A matrix are

plotted on the complex plane.

MG with ILU(0) smoother

In this test, a proper MG scheme is combined with a preconditioned GMRES(m)

smoother ,and the convergence rates are examined for all flow regimes with timestep

size of 2000. For reference, all simulations are plotted along with both the conver-

gence rate of ILU(0) preconditioned GMRES(m) and naive p-MG preconditioned

GMRES(m). The following were varied:

• GMRES(m)preconditioner: [Naive MG, none, ILU(0)]

• Fine grid basis function order: [4, 2]

5.3.7 Discussion and Results

Primary benchmark results and discussion

The results of the primary benchmark for HDG can be found in Tables A.2 –

A.4, and the results for LDG can be found in Tables A.5 – A.7. Note that the

benchmark time results for MATLAB’s “slash” operator are also included. Also

note that the “slash” solver is not preconditioned, but the times recorded serve to

quantify the variability of the benchmark time, as well as give a basis of comparison

for a fast solver. MATLAB’s “slash” operator is likely using a spare-direct solver for

this problem. Note that BiCGSTAB(l) and GMRES(m) are competitive with the

“slash” operator at small timestep sizes (or low CFL numbers). Also note, in the

115



“Summary” column, the iterations for QMR and BiCGSTAB(l) are multiplied by a

factor of 2 because they require 2 matrix-vector (MV) multiplications per iteration,

whereas GMRES(m) only requires one. Hence, the “Min MV” column plots the

minimum matrix-vector multiplications, but only serves to give an approximate cost

of the method, because both GMRES(m) and BiCGSTAB(l) become more expensive

for larger m and l respectively.

A number of simulations did not converge within the specified maximum iteration

count. This will be addressed once good solver-preconditioner combinations are found.

In particular, the QMR solver was the least robust, failing to converge for the largest

number of cases, whereas BiCGSTAB(l) appeared to be the most robust.

The traditional preconditioners do not generally perform as well as their block

counterparts. While the traditional preconditioners tend to decrease the number of

iterations till convergence over the unpreconditioned case, the block-preconditioners

decrease the number of iterations by a larger factor.

As expected, the two Block Jacobi implementations and the block ILU precondi-

tioner converge in a consistent number of iterations with the same residual, however

the times for each vary by as much as a factor of 10 (see dt=2000, BiCGSTAB(l),

Table A.4). Because the Jacobi2 implementation is up to 10 times slower than the

Jacobi implementation for BiCGSTAB(l), the times for the GS preconditioner can be

taken to be on the order of ten times smaller for BiCGSTAB(l) because the imple-

mentations are similar.

For some cases the Jacobi2 implementation converged in fewer iterations (for

example see dt=2000, BiCGSTAB(l), Table A.4), but these are exceptional cases

where the Jacobi2 implementation converged in one outer iteration of BiCGSTAB(l)

before the other implementations, and this may be explained by rounding errors in

the calculation of the residual, since the residual is used as a stopping criterion at

the end of each outer iteration. The value of the residual is larger for the Jacobi2

implementation which converged in fewer iterations, and this supports the proposed

hypothesis. However, the reason why the Jacobi2 implementation converged one outer

iteration sooner is not completely clear.
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Focusing on the number of iteration, where fewer iterations determine better per-

formance, the Block GS preconditioner generally performs better than the Block

Jacobi preconditioners for all flow regimes with both the LDG and HDG implementa-

tions. However, the GS preconditioner is outperformed by the ILU(0) preconditioner

in all cases for the HDG discretization. For the LDG implementation, however,

the ILU(0) preconditioner sometimes performs better, usually for smaller time-step

sizes and more advective flows, while the GS preconditioner seems better for larger

timesteps. Although, in the LDG implementation, the naive implementation of the

MG preconditioner gives the best consistent performance. Thus, for the HDG im-

plementation, the ILU(0) preconditioner seems to perform best, while for the LDG

implementation the naive implementation of the MG preconditioner performs best.

The excellent performance of the naive implementation of the MG preconditioner

for the LDG implementation was unexpected. Initially when the interpolating re-

striction/prolongation operators were used, poor performance was observed for the

MG preconditioner. However, while the MG preconditioner improved the rate of

convergence for the HDG implementation over the case where no preconditioner was

used, it was consistently outperformed by the ILU(0) preconditioner. The mismatch

between the performance of the MG preconditioner for the two different implemen-

tations indicate either that the good performance for the LDG implementation is

special, or that the restriction/prolongation operators are incorrectly specified for the

HDG implementation. Since the HDG method maps information from the interior

of an element to its edges, the restriction/prolongation of the solution on the edges

may not follow the same rules as the method discussed in Section 5.3.5 for the restric-

tion/prolongation of the solution on the elements. The excellent performance for the

MG preconditioner on the LDG discretization may be explained by the orthogonality

of the Koornwinder modal basis and the linearity of the problem, in which case the

MG preconditioner applied naively (M1A = M1b) essentially solves the lower modes

directly. For non-linear problems, the same result cannot be expected. Then, the

linearity property may be lost for the HDG implementation, which could explain why

the naive MG implementation does not perform equally well. In either case, further
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investigation is warranted, but is beyond the scope of this thesis.

Comparing the performance of the HDG implementation to the LDG implemen-

tation, it can be seen the the HDG implementation converged for more cases than the

LDG implementation. Also, keeping in mind that the HDG implementation solved

the system three times whereas the LDG implementation solves the system only once,

the HDG implementation tended to converge in fewer iterations and completed the

calculations faster than the LDG implementation for the same preconditioner. How-

ever, due to the excellent performance of the MG preocnditioner, for some cases with

timestep sizes larger than 20 (CFL larger than 100) the LDG implementation was

found to be more efficient than the HDG implementation. This means that either a

more competitive preconditioner for the HDG implementation needs to be found, or

that, for an iterative solution method, there is no clear winner between the LDG and

HDG method.

For small values of the timestep size, the ILU(0) preconditioned GMRES(m) or

BiCGSTAB(l) solvers converge acceptably fast for both discretizations, and only

problems with large timestep size still require a better preconditioner.

This section identified the ILU(0) and p–MG preconditioners using the GMRES(m)

or BiCGSTAB(l) solvers as promising directions to investigate. Examining the re-

sults, it can also be seen that pure diffusive cases are more difficult to solve, and

a better preconditioning scheme is needed to handle these cases. Additionally, the

HDG discretization converged more robustly and faster than the LDG discretization

when using the ILU(0) preconditioner, however it did not see a drastic improvement

in performance using the MG preconditioner whereas the LDG discretization did.

GMRES(m) and BiCGSTAB(l) restart benchmark results and discussion

No clear winner for the choice of solver was evident from the primary benchmark,

but both GMRES(m) and BiCGSTAB(l) performed better than QMR. Since these

algorithms depend on m and l respectively, m and l were varied to see if an additional

gain in performance could be realized while using the ILU(0) preconditioner. The

results are reported in Tables A.8 – A.10.
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For pure advection at small timestep sizes, GMRES(m) was slightly faster than

BiCGSTAB(l) but the performance was comparable (note the residual is smaller for

BiCGSTAB(l) for these cases). At large timestep sizes, BiCGSTAB(l) with l ≈ 7

performed consistently well, converging within the specified iteration tolerance for all

timestep sizes, whereas GMRES(m) failed to converge within the specified iteration

tolerance for the largest timestep size (dt = 2000). Interestingly, BiCGSTAB(l) with

large values of l seems less robust, since the cases with large l did not converge for

all pure advective cases.

For pure diffusion, both GMRES(m) and BiCGSTAB(l) did not converge at large

timestep sizes. The residuals were similar for both solvers at the the small timestep

sizes although BiCGSTAB(l) had one order of magnitude smaller residuals at the

largest timestep size, but the performance was comparable. At small timestep sizes,

GMRES(m) was slightly faster, but the performance was again similar. Overall, the

performance was poor for both solvers, and a better preconditioner is required for

diffusive regimes when using a large timestep size.

The results for the advection-diffusion case were similar to the pure diffusion case,

suggesting the flow regime chosen is more diffusion-dominated. Although, for the

advection-diffusion case, fewer converged solutions resulted, specifically BiCGSTAB(l)

failing to converge for more cases than the pure diffusive case. The final residual is

smaller for GMRES(m) with m = 50 compared to BiCGSTAB(l) for all cases where

the timestep size was smaller than 2000. However, at a timestep size of 2000, the

smallest residual for BiCGSTAB(l) was an order of magnitude smaller than the small-

est GMRES(m) residual. Regardless, a better preconditioner is required to handle

the solution of the diffusive terms.

Overall, for GMRES(m) small values of m resulted in faster convergences, whereas

larger values of GMRES(m) seemed to converge more robustly. For BiCGSTAB(l)

l ≈ 7 is a good choice. The total performance of the two solvers were similar, but

because BiCGSTAB(l) was more robust, it is the preferred solver.
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Figure 5-3: Residual history of different solvers with and without ILU(0) precondi-
tioner for advection only flow regime with timestep size of 200

BiCGSTAB(l) with l = 5, 9 ILU benchmark

The ILU(0) preconditioner was superior in computational time compared to all

the other ILU factorizations attempted.

Convergence history test results and discussion

The convergence histories using the ILU(0) preconditioner are plotted in Figures

5-3 to 5-5 for each flow regime, and the convergence histories using the p–MG pre-

conditioner are plotted in Figures 5-6 to 5-8 for each flow regime.

The most notable feature is the rapid convergence of p–MG preconditioned

GMRES(m) and BiCGSTAB(l). QMR does not see an improvement from the p–MG

preconditioner, and this may be explained by the fact that the QMR implementation

also needs (M1T )−1 supplied to it. This suggests that either the implementation is

incorrect, or that a naive implementation is not sufficient, and more care needs to

be taken with the restriction/prolongation portion of this preconditioner when imple-

menting the function performing the (M1T )−1x matrix-vector multiply. QMR con-
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Figure 5-4: Residual history of different solvers with and without ILU(0) precondi-
tioner for diffusion only flow regime with timestep size of 200

Figure 5-5: Residual history of different solvers with and without ILU(0) precondi-
tioner for advection-diffusion flow regime with timestep size of 200
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Figure 5-6: Residual history of different solvers with and without p–MG precondi-
tioner for advection only flow regime with timestep size of 200

Figure 5-7: Residual history of different solvers with and without p–MG precondi-
tioner for diffusion only flow regime with timestep size of 200
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Figure 5-8: Residual history of different solvers with and without p–MG precondi-
tioner for advection-diffusion flow regime with timestep size of 200

verged slowly and smoothly for most cases but diverged for some cases. GMRES(m)

tended to converge smoothly and monotonically as expected, whereas BiCGSTAB(l)

would converge erratically but with a general downward trend for most cases.

The p–MG preconditioner improved the convergence rate considerably for all flow

regimes, with BiCGSTAB(l) converging within one outer iteration and GMRES(m)

converging within 15 iterations. While these results are favorable, it is worth still

considering the ILU(0) preconditioner, since the p-MG result may only hold for the

special case of linear equations, and a more general preconditioner capable of handling

non-linear problems is desired. While it is expected that the p-MG preconditioner

would improve the rate of convergence for diffusive problems, the improvement for the

advective case was not expected, and may be due to the linearity of the problem. Also,

the p-MG preconditioner did not improve the convergence of the HDG discretization,

hence we examine the performance of the ILU(0) preconditioner next.

The ILU(0) preconditioner only improved the convergence rate for the pure-

advective case for all the solvers, although the improvement was not as impressive as

the p–MG preconditioner. The ILU(0) preconditioner seemed to improve the initial
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Figure 5-9: Eigenvalues of conditioned and unconditioned A matrices for pure ad-
vection with timestep size 200. The eigenvalues λs are normalized by λs = λ/Λmax,
where Λmax = max<{λ} − min<{λ} is the maximum range of the real component
of the eigenvalues of both matrices

reduction of the residual for all cases, but for the advection-diffusion case, the rate of

the convergence for GMRES(m) is clearly slower for the preconditioned matrix. To

gain insight into why this happens, we examine the eigenvalues of the preconditioned

and unpreconditioned matrices, which are reported in Figures 5-9 to 5-11.

Note that the eigenvalues in 5-9 to 5-11 are normalized by the maximum range

of the real component of the eigenvalues of both matrices. From Trefethen and

Bau (1997), the convergence of GMRES(m) is improved when the eigenvalues are

localized and do not surround the origin. From Figure 5-9, it can be seen that

the ILU(0) preconditioner seems to localize the eigenvalues of the original system

considerably, whereas Figures 5-10 and 5-11 still show that the eigenvalues have large

imaginary components. Whether or not the preconditioned eigenvalues surround the

origin are not clear from Figures 5-9 to 5-11, and thus a different normalization of the

eigenvalues are plotted in Figures 5-12 to 5-14. Here the eigenvalues are normalized

by the maximum absolute value of the real part of the eigenvalue belonging to the

specific matrix.

From Figure 5-12 we see that for pure advection the normalized preconditioned
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Figure 5-10: Eigenvalues of conditioned and unconditioned A matrices for pure dif-
fusion with timestep size 200. The eigenvalues λs are normalized by λs = λ/Λmax,
where Λmax = max<{λ} − min<{λ} is the maximum range of the real component
of the eigenvalues of both matrices

Figure 5-11: Eigenvalues of conditioned and unconditioned A matrices for advection-
diffusion with timestep size 200. The eigenvalues λs are normalized by λs = λ/Λmax,
where Λmax = max<{λ} − min<{λ} is the maximum range of the real component
of the eigenvalues of both matrices
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Figure 5-12: Eigenvalues of conditioned and unconditioned A matrices for pure advec-
tion with timestep size 200. The eigenvalues λ∗s are normalized by λ∗s = λ/λmax, where
λmax = max<{λ} is the maximum absolute value of the real part of the eigenvalue
belonging to the specific matrix

Figure 5-13: Eigenvalues of conditioned and unconditioned A matrices for pure diffu-
sion with timestep size 200. The eigenvalues λ∗s are normalized by λ∗s = λ/λmax, where
λmax = max<{λ} is the maximum absolute value of the real part of the eigenvalue
belonging to the specific matrix
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Figure 5-14: Eigenvalues of conditioned and unconditioned A matrices for advection-
diffusion with timestep size 200. The eigenvalues λ∗s are normalized by λ∗s = λ/λmax,
where λmax = max<{λ} is the maximum absolute value of the real part of the
eigenvalue belonging to the specific matrix

eigenvalues do not surround the origin and are generally more localized even though

the relative imaginary components of the eigenvalues are larger. In cases with dif-

fusion, Figure 5-13 and 5-14 show that the preconditioned eigenvalues surround the

origin in both cases, and that the relative size of the imaginary components of the

preconditioned matrix are larger. More importantly, it also pushes the smallest eigen-

values closer to zero such that the ratio λmax/λmin is increased. Therefore the ILU(0)

preconditioner does not favorably scale the matrix for the cases where diffusion is in-

volved. This suggests that a better preconditioner is required to handle the diffusive

part of the flow.

MG with preconditioned GMRES(m) smoother results and discussion

All results are reported in Appendix C. Note that in the legend “MG” refers to

the properly implemented MG preconditioner with a GMRES(m) smoother, where

the preconditioner used for the smoother is indicated in the caption, and “MG naive”

refers to the naive MG implementation used during the Primary benchmark.

In all cases, the naive MG preconditioner is considerably better than any other
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combination. It is rivaled only by the the proper MG implementation when the

GMRES(m) smoother is preconditioned by the naive MG preconditioner, in which

case the naive MG preconditioner is doing most of the work. Considering that the

primary benchmark indicated that the naive MG preconditioner did not work for the

HDG implementation, the cases where the naive MG preconditioner is not used are

also examined.

Considering the case where the fine-grid disrectization uses fourth order basis

functions, the convergence is examined. For pure advection, if the GMRES(m)

smoother is not preconditioned, the solver diverges! However, the ILU(0) precon-

ditioned GMRES(m) smoother combined with the proper MG scheme increases the

rate of convergence over using ILU(0) preconditioned GMRES(m) without the MG

correction. The pure diffusion case divergences with the proper MG preconditioner us-

ing either unpreconditioned or ILU(0) preoconditioned GMRES(m). The advection-

diffusion case diverges when GMRES(m) is preconditioned with ILU(0)Ẇhen GMRES(m)

is not preconditioned and only uses the proper MG scheme, it converges faster than

if GMRES(m) uses only the ILU(0) preconditioner (that is without the MG correc-

tion). These disheartening results indicate that a single solution scheme does not

suffice, and a good preconditioner for the pure diffusive case has not been found. In

all cases, the residual is increased during the MG correction, even though the overall

rate of convergence is increased. The increase of the residual after the MG correction

is suspected to be due to the large jump in grid sizes between the p = 4 and p = 1

disrectizations. Hence, the MG scheme is also examined for a fine-grid discretization

using p = 2 order basis functions.

Considering the case where the fine-grid discretization uses second order basis

functions, and still ignoring cases where the naive MG preconditioner is used, the con-

vergence is examined. In this case, the ILU(0) preconditioned GMRES(m) smoother

combined with the proper MG preconditioner gives better results than using only

ILU(0) preconditioned GMRES(m). The pure advection case converges within 600

matrix-vector multiplies, and the advection-diffusion case converges within 100. For

the pure diffusion case, the simulation does not converge within 1000 matrix-vector
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multiplies, but the final residual is nearly two orders of magnitude lower than when

using only the ILU(0) preconditioned GMRES(m) solver, and the rate of convergence

is faster. The advection-diffusion case did not see an increase in the residual after

the MG correction, whereas the pure advection and pure diffusion cases still saw the

increase. This result shows that when the difference between the order of the basis

used on the coarse and fine grid discretizations are not as large, improved convergence

can be realized using the proper MG implementation. This suggests that a hierarchal

p–MG scheme (V or W MG for example) could be the best choice.

5.4 Conclusions and Recommendations

The best preconditioner for the LDG discretization is the naive p-MG precondi-

tioner and for the HDG implementation the best preconditioner found was the ILU(0)

preconditioner, although proper p–MG schemes were not examined for HDG. For both

discretizations, the BiCGSTAB(l) solver seemed to be the most robust, and gave the

best consistent performance.

It was found that the HDG discretized matrices were faster to solve with fewer

iterations in cases where the naive p–MG preconditioner was not used for the LDG

discretization. With the naive p–MG preconditioner, the LDG discretized matrices

can be solved more efficiency for timestep sizes larger than 20 (CFL approximately

100) than the HDG discretized matrices.

Values of l ≈ 7 seemed to work best for BiCGSTAB(l) whereas for GMRES(m)

smaller values of m resulted in faster convergence, and larger values of m resulted in

more robust performance.

For properly implemented MG schemes, this works suggests a hierarchal p–MG

scheme, where the change in p between levels is not too large, may improve the rate

of convergence when using an ILU(0) preconditioned GMRES(m) smoother.

It is recommended that a naive MG preconditioner is examined in detail in order

to, extend it for use with the HDG discretization and general non-linear problems.

The benchmarks for LDG should also be repeated for an HDG discretization in order
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to find a good preconditioner for HDG. Further examination of the proper p-MG

implementation for HDG is also warranted if the naive p–MG implementation is

found not to work. A hierarchal proper p–MG scheme might be necessary.

The work presented here enables the efficient implicit solution of advection-diffusion

problems for solving biogeochemical reactions in the ocean. Also, equations such as

the Incompressible Navier Stokes equations can now be solved efficiently with the

procedure described.

130



Chapter 6

Conclusions

The purpose of this thesis is to identify promising numerical methods that are

suitable to multiscale ocean predictions. In order to fulfill this purpose, current ef-

forts towards creating new ocean models are reviewed, an understanding of the most

promising methods used by other researchers is developed, the most promising exist-

ing methods are studied and applied to idealized cases, new methods are incubated

and evaluated by solving biogeochemical advection-diffusion-reactions equations, and

efficient solver/preconditioner combinations for inverting DG FEM matrices are iden-

tified.

From our quantitative incubation of numerical schemes, a number of recommen-

dations on the tools necessary to solve dynamical equations for multiscale ocean

predictions are provided, and a summary follows.

6.1 Summary of Results

Most of the second generation ocean models reviewed use some form of the FEM.

The FEM models are more sophisticated than their FV counterparts, but due to the

added complexity are less mature. The sophistication of the FEM models arise from

the freedom for higher order schemes, and the freedom to choose the space of the

solution and test functions. The FV method models reviewed are more mature and

ready to be used for realistic problems.
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The DG FEM is a promising numerical method for developing the next generation

ocean models if the efficiency constraints can be overcome. The DG FEM method

offers efficient data structures for parallel implementations, higher order accuracy, ge-

ometric flexibility enabling sophisticated adaptive algorithms, and superconvergence

properties for dispersion and dissipation, making the method particularly well suited

to advection-dominated flows.

The DG FEM method was implemented for ocean biogeochemical reaction equa-

tions, which to our knowledge, is the first time this has been done. The numerical

implementation was verified using a number of test cases, and the LSRK time integra-

tion scheme was found to be more accurate than the first order Euler time integration

scheme.

A purely advective test case (the advection of a cosine bell) was used to demon-

strate that a higher order scheme can be more accurate, more efficient, and use fewer

degrees of freedom than a lower order scheme. It was concluded that high and low

order schemes should also be compared on a efficiency-accuracy basis to complement

the DOF-efficiency based comparison.

It shown that such a p-adaptive scheme using different orders of basis functions for

different constituents on the same element is promising for improving the efficiency

and the accuracy of the solution. However, it was also shown that such schemes need

to consider the cost of additional volume and edge interpolation operations when

formulating the adaptation criterion.

It was argued that adaptive algorithms are necessary to resolve important small

scale features which would go unnoticed if a coarse non-adaptive scheme was used.

While explicit time integration schemes were sufficient for the advective opera-

tors, the stability constraints associated with the diffusive terms were prohibitively

expensive. It was concluded that implicit time integration schemes were necessary

when small values of grid Peclet number (large values of κ) is required.

For an LDG discretization, it was found that a naive p– MG preconditioner was

optimum, whereas the ILU(0) preconditioner was the best preconditioner found for

an HDG discretization. For both discretizations, the BiCGSTAB(l) solver with l ≈ 7
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offered consistently efficient and robust performance, being slightly better than a

GMRES(m) solver, and much better than a QMR solver. HDG discretized systems

were found to be faster to solve with fewer iterations than LDG discretized systems

whenever the naive LDG p–MG preconditioner was not used. The naively p-MG

preconditioned LDG solves were sometimes faster than the HDG solves for timestep

sizes larger than approximately 20 (or CFL number approximately 100). It was argued

that a hierarchal p–MG scheme may improve the rate of convergence when using an

ILU(0) preconditioned GMRES(m) smoother.

6.2 Recommendations

It is recommended that a mature FV model such as SUNTANS, FVCOM, or a

mature FEM models such as SELFE, ADCIRC, or FEOM is used if unstructured grids

are necessary for immediate application. Applications that require unstructured grids

would normally be found in regions with complex geometries or bottom topography.

Adopting a sophisticated adaptive model such as SLIM or ICOM for near future

use is recommended. The flexibility and accuracy of these adaptive models promise

to widen the range of ocean processes that can be studied, specifically processes that

depend on multiple scales.

Additional examination of DG FEMs for ocean simulations is recommended due to

the advantages of these methods. In particular, HDG methods seem to be a promising

avenue to explore. While the efficiency of DG methods may not be as good as compact

FD schemes, the additional geometric flexibility of DG methods warrant additional

attention. It is recommended that DG should be studied on adaptive structured grids

for ocean models and their efficiency compared to traditional structured grid schemes.

This approach also enables the accurate treatment of complex geometries by having

an unstructured grid at boundaries for accuracy, while maintaining the an efficient

structured mesh for the bulk of the unknown in the interior.

It is recommended that high-order quadrature-free adaptive algorithms are used

whenever possible for optimum accuracy and efficiency. Also, explicit time integration
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is recommended for advective operators, whereas implicit time integration schemes

are recommended for diffusive operators due to prohibitively expensive numerical

stability constraints for small grid Peclet numbers.

A naive MG preconditioner is examined in detail in order to extend it for use with

the HDG discretization and general non-linear problems. Further examination of the

proper p-MG implementation for HDG and non-linear problems is also warranted if

the naive p–MG implementation performs poorly. A hierarchal proper p–MG scheme

may be necessary.

6.3 Future work

A next step is to be able to solve both the physics and biology using HDG, so as to

explore biogeochamical ocean processes. This could allow two-dimensional idealized

studies of coupled physics-biology, possibly aiding parameter selection for realistic

three-dimensional simulations. Additionally, this code would serve as a test-bed for

adaptive algorithms.

The HDG method will also be explored. Using HDG discretized projection meth-

ods may yield an efficient solution method for solving the Incompressible Navier

Stokes equations.

The solution of two-dimensional physics could be extended to three dimensions.

Adaptive oct-tree algorithms can be examined for their efficiency and compared to

more standard unstructured adaptive algorithms.
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Appendix A

Tables
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Table A.1: Detailed table of Second generation ocean models
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Table A.2: Primary Preconditioner/Solver benchmark results for κ = 1, Vscale = 0 us-
ing HDG discretization. Red highlighting indicates the solution did not converge. The
fastest simulation for a given CFL number is highlighted in green, and the iteration
with the fewest matrix-vector multiplications is outlined in orange.
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Table A.3: Primary Preconditioner/Solver benchmark results for κ = 0, Vscale = 1 us-
ing HDG discretization. Red highlighting indicates the solution did not converge. The
fastest simulation for a given CFL number is highlighted in green, and the iteration
with the fewest matrix-vector multiplications is outlined in orange.
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Table A.4: Primary Preconditioner/Solver benchmark results for κ = 1, Vscale = 1 us-
ing HDG discretization. Red highlighting indicates the solution did not converge. The
fastest simulation for a given CFL number is highlighted in green, and the iteration
with the fewest matrix-vector multiplications is outlined in orange.
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Table A.5: Primary Preconditioner/Solver benchmark results for κ = 1, Vscale = 0 us-
ing LDG discretization. Red highlighting indicates the solution did not converge. The
fastest simulation for a given CFL number is highlighted in green, and the iteration
with the fewest matrix-vector multiplications is outlined in orange.
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Table A.6: Primary Preconditioner/Solver benchmark results for κ = 0, Vscale = 1 us-
ing LDG discretization. Red highlighting indicates the solution did not converge. The
fastest simulation for a given CFL number is highlighted in green, and the iteration
with the fewest matrix-vector multiplications is outlined in orange.
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Table A.7: Primary Preconditioner/Solver benchmark results for κ = 1, Vscale = 1 us-
ing LDG discretization. Red highlighting indicates the solution did not converge. The
fastest simulation for a given CFL number is highlighted in green, and the iteration
with the fewest matrix-vector multiplications is outlined in orange.
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Table A.8: GMRES versus BiCGSTAB(l) restart benchmark results for κ = 1, Vscale =
0 using LDG discretization. Red highlighting indicates the solution did not converge.
The fastest simulation for a given CFL number is highlighted in green, and the iter-
ation with the fewest matrix-vector multiplications is outlined in orange.
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Table A.9: GMRES versus BiCGSTAB(l) restart benchmark results for κ = 0, Vscale =
1 using LDG discretization. Red highlighting indicates the solution did not converge.
The fastest simulation for a given CFL number is highlighted in green, and the iter-
ation with the fewest matrix-vector multiplications is outlined in orange.
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Table A.10: GMRES versus BiCGSTAB(l) restart benchmark results for κ =
1, Vscale = 1 using LDG discretization. Red highlighting indicates the solution did
not converge. The fastest simulation for a given CFL number is highlighted in green,
and the iteration with the fewest matrix-vector multiplications is outlined in orange.
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Appendix B

Description of MATLAB

functions/scripts

B.1 Functions and Helper Scripts for Implicit In-

tegration

The following is a list including a short description of some of the relevant scripts/functions

written for this study.

• Bench.m: This is the main program function. It accepts the various solver or

problem parameters and outputs the computation time, error flag, residual, it-

erations till convergence, and the problem matrix. It is set up to do multiple

integrations (advancing the solution in time) for multiple constituents. It either

computes or loads from a file the preconditioner and problem matrix. Using

multiple switch statements it chooses between different solvers and precondi-

tioners. The computation time is taken from the onset of the time integration

till its completion, and does not include the time to calculate the preconditioner

or problem matrix. The rational behind this is that the formation of the ma-

trix/preconditioners used in this implementation would not be representative

of the computational time of an optimized implementation, and can therefore

not be compared (in terms of time) to a MATLAB-implemented preconditioner
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such as ILU(0).

• BenchDriver.m: This is a driver script containing multiple loops to make calls

to Bench.m with various input parameters. There are multiple versions for the

driver script for the different numerical experiments, but each have essentially

the same structure with slight differences.

• BenchXcelOutput.m: Script to convert MATLAB output to Excel for ease of

analysis.

• Preconditioner.m: This function implements some of the preconditioners, and

computes sparse matrix preconditioners for use in the solvers.

• BlockPreconditioner.m: This function implements some of the precondition-

ers, and is passed as a function for use in the solver, returning the product

M−1x.

• MG.m: Script used to implement a more advanced MG preconditioner with an

ILU(0) preconditioner.
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Appendix C

Figures

C.1 Convergence plots for Multigrid Benchmark
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Figure C-1: Convergence history of GMRES(m) solver using different preconditioners.
Here the naive MG preconditioner is used to precondition the GMRES(m) smoother
for a pure advection case with a proper p-MG implementation. Fourth order basis
functions are used on the fine grid.

Figure C-2: Convergence history of GMRES(m) solver using different preconditioners.
Here the naive MG preconditioner is used to precondition the GMRES(m) smoother
for a pure diffusion case with a proper p-MG implementation. Fourth order basis
functions are used on the fine grid.
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Figure C-3: Convergence history of GMRES(m) solver using different preconditioners.
Here the naive MG preconditioner is used to precondition the GMRES(m) smoother
for advection-diffusion case with a proper p-MG implementation. Fourth order basis
functions are used on the fine grid.

Figure C-4: Convergence history of GMRES(m) solver using different preconditioners.
Here no preconditioner is used to precondition the GMRES(m) smoother for a pure
advection case with a proper p-MG implementation. Fourth order basis functions are
used on the fine grid.
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Figure C-5: Convergence history of GMRES(m) solver using different preconditioners.
Here no preconditioner is used to precondition the GMRES(m) smoother for a pure
diffusion case with a proper p-MG implementation. Fourth order basis functions are
used on the fine grid.

Figure C-6: Convergence history of GMRES(m) solver using different precondition-
ers. Here no preconditioner is used to precondition the GMRES(m) smoother for
advection-diffusion case with a proper p-MG implementation. Fourth order basis
functions are used on the fine grid.
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Figure C-7: Convergence history of GMRES(m) solver using different preconditioners.
Here the ILU(0) preconditioner is used to precondition the GMRES(m) smoother
for a pure advection case with a proper p-MG implementation. Fourth order basis
functions are used on the fine grid.

Figure C-8: Convergence history of GMRES(m) solver using different preconditioners.
Here the ILU(0) preconditioner is used to precondition the GMRES(m) smoother for a
pure diffusion case with a proper p-MG implementation. Fourth order basis functions
are used on the fine grid.
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Figure C-9: Convergence history of GMRES(m) solver using different preconditioners.
Here ILU(0) preconditioner is used to precondition the GMRES(m) smoother for
advection-diffusion case with a proper p-MG implementation. Fourth order basis
functions are used on the fine grid.

Figure C-10: Convergence history of GMRES(m) solver using different precondi-
tioners. Here the naive MG preconditioner is used to precondition the GMRES(m)
smoother for a pure advection case with a proper p-MG implementation. Second
order basis functions are used on the fine grid.
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Figure C-11: Convergence history of GMRES(m) solver using different precondi-
tioners. Here the naive MG preconditioner is used to precondition the GMRES(m)
smoother for a pure diffusion case with a proper p-MG implementation. Second order
basis functions are used on the fine grid.

Figure C-12: Convergence history of GMRES(m) solver using different precondi-
tioners. Here the naive MG preconditioner is used to precondition the GMRES(m)
smoother for advection-diffusion case with a proper p-MG implementation. Second
order basis functions are used on the fine grid.
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Figure C-13: Convergence history of GMRES(m) solver using different precondition-
ers. Here no preconditioner is used to precondition the GMRES(m) smoother for a
pure advection case with a proper p-MG implementation. Second order basis func-
tions are used on the fine grid.

Figure C-14: Convergence history of GMRES(m) solver using different precondition-
ers. Here no preconditioner is used to precondition the GMRES(m) smoother for a
pure diffusion case with a proper p-MG implementation. Second order basis functions
are used on the fine grid.
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Figure C-15: Convergence history of GMRES(m) solver using different precondition-
ers. Here no preconditioner is used to precondition the GMRES(m) smoother for
advection-diffusion case with a proper p-MG implementation. Second order basis
functions are used on the fine grid.

Figure C-16: Convergence history of GMRES(m) solver using different precondition-
ers. Here the ILU(0) preconditioner is used to precondition the GMRES(m) smoother
for a pure advection case with a proper p-MG implementation. Second order basis
functions are used on the fine grid.
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Figure C-17: Convergence history of GMRES(m) solver using different precondition-
ers. Here the ILU(0) preconditioner is used to precondition the GMRES(m) smoother
for a pure diffusion case with a proper p-MG implementation. Second order basis
functions are used on the fine grid.

Figure C-18: Convergence history of GMRES(m) solver using different precondition-
ers. Here ILU(0) preconditioner is used to precondition the GMRES(m) smoother
for advection-diffusion case with a proper p-MG implementation. Second order basis
functions are used on the fine grid.
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Bernard, P. E., Deleersnijder, E., Legat, V., and Remacle, J. F. (2008). Dispersion
analysis of discontinuous galerkin schemes applied to poincare, kelvin and rossby
waves. Journal of Scientific Computing, 34:26–47.

Besiktepe, S., Lermusiaux, P., and Robinson, A. (2002). Coupled physical and biogeo-
chemical data-driven simulations of massachusetts bay in late summer: real-time
and postcruise data assimilation. Journal of Marine Systems, 40:171–212.

Besiktepe, S., Lermusiaux, P., and Robinson, A. (2003). Coupled physical and biogeo-
chemical data driven simulations of massachusetts bay in late summer: real-time
and post-cruise data assimilation. J. of Marine Sys., 40:171–212.

Blain, C. A., Westerink, J. J., Luettich, R. A. J., and Scheffner, N. W. ADCIRC:
An advanced three-dimensional circulation model for shelves coasts and estuaries,
report 4: Hurrican storm surge modeling using large domains. Dredging Research
Program Technical Report DRP-92-6, U.S. Army Engineers Waterways Experiment
Station, Vicksburg, MS.

Blanton, B., Seim, H., Luettich, R., Lynch, D., Werner, F., Smith, K., Voulgaris,
G., Bingham, F., and Way, F. (2004). Barotropic tides in the south atlantic bight.
Journal of Geophysical Research, 109(C12024):17 pp.

Bleck, R. and Smith, L. (1990). A wind-driven isopycnic co-ordinate model of the
north and equatorial atlantic ocean, 1: Model development and supporting exper-
iments. Journal of Geophysical Research, 95:32733285.
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